Convenient Syntheses of Cytidine 5'-Triphosphate, Guanosine 5'-Triphosphate, and Uridine 5'-Triphosphate and Their Use in the Preparation of UDP-glucose, UDP-glucuronic Acid, and GDP-mannose

Ethan S. Simon, Sven Grabowski, and George M. Whitesides

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received September 20, 1989

This paper compares enzymatic and chemical methods for the synthesis of cytidine 5'-triphosphate, guanosine 5'-triphosphate, and uridine 5'-triphosphate from the corresponding nucleoside monophosphates on scales of ~10 g. These nucleoside triphosphates are important as intermediates in Leloir pathway biosyntheses of complex carbohydrates; the nucleoside monophosphates are readily available commercially. The best route to CTP is based on phosphorylation of CMP using adenylate kinase (EC 2.7.4.3); the route to GTP involves phosphorylation of GMP using guanylate kinase (EC 2.7.4.8); chemical deamination of CTP (prepared enzymatically from CMP) is the best synthesis of UTP. For the 10–200-mmol-scale reactions described in this paper, it is more convenient to prepare phosphoenolpyruvate (PEP), used in the enzymatic preparations, from d-(-)-3-phosphoglyceric acid (3-PGA) in the reaction mixture rather than to synthesize PEP in a separate chemical step. The in situ conversion of 3-PGA to PEP requires the coupled action of phosphoglycerate mutase (EC 2.7.5.3) and enolase (EC 4.2.1.11). The enzyme-catalyzed syntheses of uridine 5'-diphosphoglucose (UDP-Glc), uridine 5'-diphosphogluconuronic acid (UDP-GlcUA), and guanosine 5'-diphosphomannose (GDP-Man) illustrate the use of the nucleoside triphosphates.

Introduction

As part of a broad program to develop synthetic techniques based on glycosyl transferases for the preparation of glycoproteins, glycolipids, and proteoglycans, we wished to develop convenient routes to cytidine 5'-triphosphate (CTP), guanosine 5'-triphosphate (GTP), and uridine 5'-triphosphate (UTP). Enzyme-catalyzed reactions of these three compounds with monosaccharides are central reactions in the biosynthesis of the nucleoside phosphate sugars required by glycosyl transferases in mammalian biochemistry (CMP-NeuAc, GDP-Fuc, GDP-Man, UDP-Gal, UDP-GalNAc, UDP-Glc, UDP-GlcNAc, UDP-GlcUA, and UDP-Xyl). An important issue in planning synthetic tactics concerns the method of synthesizing the NTPs and nucleoside phosphate sugars for use in enzyme-catalyzed reactions: should they be synthesized independently and used as stoichiometric reagents (in which case chemical, enzymatic or fermentation syntheses would all, in principle, be acceptable) or should they be generated and used in situ (in which case only enzymatic syntheses would be acceptable)? We have decided initially to develop synthetic methods that generate the NTPs and nucleoside phosphate sugars as stoichiometric reagents, rather than relying on their generation in situ, for five reasons. First, this type of approach is the most practical. Developing complex systems of coupled enzymes is difficult. If the syntheses of the NTPs and nucleoside phosphate sugars can be developed and optimized separately, the final systems are simpler. Second, this approach has greater generality. If convenient routes to all of the NTPs and nucleoside phosphate sugars can be developed, these compounds are then available for the full range of oligo- and polysaccharide syntheses. Third, this approach is the most flexible. By conducting syntheses of these compounds separately, it is possible to use whatever synthetic method works best for each, without concern for the compatibility of these methods. Fourth, separating syntheses of the nucleoside phosphate sugars from the steps involving use of these compounds in forming glycosidic bonds permits the latter reactions to be conducted in a way that optimizes the use of the glycosyl transferases (normally the most difficult enzymes to obtain and use). Finally, this approach is more likely to be successful for the synthesis of unnatural compounds, where analogues of the natural reactants may have to be synthesized chemically.

CTP, GTP, and UTP are all available from commercial sources, but their cost precludes their use in multigram-scale reactions. We do not discuss in detail the synthesis of adenosine 5'-triphosphate (ATP) here because it is relatively inexpensive compared with other NTPs.
because it has already been synthesized enzymatically on a 50-mmol scale.6

Objective. Our objective in this work was to develop convenient syntheses on ~10-g scale of CTP, GTP, and UTP of sufficient purity for use in enzyme-catalyzed reactions. Four strategies can be used to produce NTPs: (i) enzymatic synthesis (using cell-free enzymes), (ii) chemical synthesis, (iii) fermentation, and (iv) isolation from natural sources. We considered the latter two methods to be too unfamiliar to be useful in classical synthetic organic chemistry laboratories and did not investigate their merits. We conclude that enzymatic methods provide the most convenient routes to CTP and GTP. Chemical deamination of CTP (produced enzymatically) is the best route to UTP.

Methods of Enzymatic Synthesis. Enzymatic conversion of a NMP to a NTP requires two kinases: one for NMP and one for NDP (eq 1). The synthesis of NTPs from NDPs is straightforward. Three kinases are available that convert all four of the NDPs (ADP, GDP, CDP, and UDP) to the corresponding NTPs: pyruvate kinase (PK, EC 2.7.1.40) uses phosphoenolpyruvate (PEP) as a phosphoryl donor, acetate kinase (EC 2.7.2.1) uses acetyl phosphate, and nucleosidiphosphate kinase (EC 2.7.4.6) uses ATP. We chose pyruvate kinase as kinase 2 because PEP is more stable than acetyl phosphate and pyruvate kinase is less expensive than nucleoside diphosphate kinase.5

The preparation of NTPs from NMPs is more difficult than the preparation of NTPs from NDPs. No one, stable, inexpensive enzyme is known that converts all of the NMPs to NDPs. We examined three commercially available kinases: adenylate kinase6 (AdK, EC 2.7.4.3), guanylate kinase7 (GK, EC 2.7.4.8), and nucleosidemonophosphate kinase (NMPK, EC 2.7.4.4, X = U). P - phosphate, Table I lists scales and yields.

kinases, cytidyl (EC 2.7.4.14) and uridylic kinase7 (EC 2.7.4.6) are not commercial products. Nucleosidemonophosphate kinase uses ATP to phosphorylate AMP, CMP, GMP, and UMP.12

A serious drawback to the use of NMPK is its instability and cost. Furthermore, preparations of NMPK are not homogeneous, and a mixture of kinases may actually be present. Because adenylate kinase is the least expensive and most stable of these three kinases, we tried to use it to phosphorylate UMP and GMP. We were able to convert UMP to UDP using adenylate kinase, but not GDP to GTP.

Many kinases use ATP as a phosphorylating agent. ATP usually is recycled from ADP by using pyruvate kinase or phosphoenolpyruvate (PEP)12,13 or acetate kinase and acetyl phosphate.14 A recent review summarizes the relative merits of these two methods to regenerate ATP in organic synthesis.5 PEP is more stable in solution than acetyl phosphate and is thermodynamically a stronger phosphoryl donor.5 Commercial PEP is, however, too expensive ($4800/mmol) to use in reactions on a preparative scale (>50 mmol of PEP is required for the larger reactions described in this paper, so it must be synthesized in a separate step. For this work, we developed a convenient method (the PGA method, Scheme I) for the enzymatic synthesis of PEP from the relatively inexpensive d-(-)-3-phosphoglyceric acid (3-PGA, $250/mmol).15

Table I. Scale and Yields for Enzymatic Synthesis of Nucleoside Triphosphates

<table>
<thead>
<tr>
<th>NTP</th>
<th>enzyme</th>
<th>phosphoryl donor</th>
<th>amount of NTP (g yield, %)</th>
<th>reaction time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP</td>
<td>AdK</td>
<td>3-PGA</td>
<td>145 (92)</td>
<td>3</td>
</tr>
<tr>
<td>GTP</td>
<td>GK</td>
<td>AdK (Mn2+) PEP</td>
<td>12 (92)</td>
<td>3</td>
</tr>
<tr>
<td>UTP</td>
<td>AdK</td>
<td>AdK (Mn2+/Mg2+)</td>
<td>3, no reaction</td>
<td>3, no reaction</td>
</tr>
<tr>
<td>ATP</td>
<td>AdK</td>
<td>3-PGA</td>
<td>9 (91)</td>
<td>1</td>
</tr>
</tbody>
</table>

AdK = adenylate kinase (EC 2.7.4.3); GK = guanylate kinase (EC 2.7.4.8); NMPK = nucleosidemonophosphate kinase (EC 2.7.4.4). 3-PGA = d-(-)-3-phosphoglyceric acid; PEP = phosphoenolpyruvate.

* Magnesium(II) was present in all reactions unless noted otherwise.

Methods of Chemical Synthesis. A large repertoire of chemical methods for the preparation of NTPs from NMPs is available.16-20 We chose to activate the NMPs as nucleoside imidazolates21-24 (using the carbonyldiimidazole method, Scheme II) because the reaction of NMPs with 1.1'-carbonyldiimidazole occurs under relatively mild conditions compared with other methods and does not require a purification step. Other methods of chemical synthesis may be equally satisfactory.

Results and Discussion

Enzymatic Synthesis. Table I summarizes the scales and yields for enzymatic syntheses.

CTP. Adenylate Kinase/Pyruvate Kinase Method. The AdK/PK method consistently produced \textasciitilde 25 mmol of CTP starting from 10 g of CMP, 2 equiv of PEP, and a catalytic amount of ATP.9 For larger scale reactions (200 mmol), we found it more convenient, albeit more expensive,25 to generate PEP in situ using the PK method than to synthesize PEP in a separate chemical step.

The consumption of HCl during the course of the reaction provided a convenient way to monitor the progress of the reaction.26 Analysis by 31P NMR and 1H NMR spectroscopy also allowed the conversion of CMP to CTP to be followed (Figure 1, C and D). Simple precipitation with ethanol (1:1, v/v) provides CTP (and the other NTPs) of sufficient purity for use in enzyme-catalyzed synthesis. Analysis by 31P and 1H NMR spectroscopy indicated that \textasciitilde 1/3 each of ATP, diphosphate of 3-PGA, and ethanol were also present (Figure 1). If pure material were required, many purification methods based on ion-exchange chromatography exist (for examples, see the part of the Experimental Section describing chemical preparations of nucleoside triphosphates). Preparation of ATP in a similar manner using PEP generated in the reaction mixture from 3-PGA was also successful.

A catalytic amount of ATP or CTP was needed to initiate the reaction catalyzed by adenylate kinase (Scheme I). The subsequent reaction catalyzed by pyruvate kinase forms 1 equiv of CTP and regenerates either triphosphate. In the synthesis of CTP, we used a catalytic amount of ATP rather than CTP because ATP is less expensive than CTP and because the value of k_{cat}/K_{m} with pyruvate kinase for ADP ($\approx 1.4 \times 10^{5}$, pH 7.5) is greater than the corresponding value for CDP ($\approx 1.2 \times 10^{4}$, pH 7.5). In practice, the reaction is indeed qualitatively faster when ATP rather than CTP initiates the reaction.

Two additional operational details are worth noting. First, we did not use the MEEC26 technique because, on a 10-g scale, transport of the nucleoside phosphates across the regenerated cellulose acetate membrane proceeded at an inconveniently slow rate. Second, in early experiments, we added bovine serum albumin (BSA, 1–10 mg/mL) to stabilize the soluble enzymes,26 but, based on qualitative observations, the presence of BSA is not necessary.

UTP. Nucleoside Monophosphate Kinase/Pyruvate Kinase Method. We made UTP using the NMPK/PK method, but NMPK deactivated rapidly. Others have noted the instability of NMPK and have increased its stability by immobilizing the enzyme.30 The AdK/PK method yielded UTP in the presence of Mg2+ in 1-g scale experiments, but the rate of reaction was too slow to be useful on a 10-g scale unless large amounts of enzyme were used. We tried replacing Mg2+ with Mn2+ and mixtures of Mg2+ and Mn2+ but we did not observe a useful change in the rate of the reaction.

GTP. Guanylate Kinase/Pyruvate Kinase Method. We made GTP using either PEP or 3-PGA as the ultimate phosphoryl donor using guanylate kinase. We used less Mg2+ (≈ 0.5 equiv) than in other experiments because GMP precipitated when more Mg2+ was added. The major impurity in the GTP produced enzymatically is GDP. GTP is unstable,32 and we did observe decomposition of...
Convenient Syntheses of Nucleoside 5'-Triphosphates

Figure 1. Reaction progress as determined by NMR spectroscopy for the synthesis of 0.2 mol of CTP from CMP and 3-PGA according to Scheme I. The solvent was D$_2$O; the large peak at 4.67 ppm in the 1H NMR spectra (500 MHz) was due to DOH. (A) Decoupled 31P NMR spectrum of product CTP after precipitation with EtOH/H$_2$O (1:1, v/v). (B) 1H NMR spectrum of product CTP after precipitation with EtOH/H$_2$O (1:1, v/v). Most of the pyruvate, dipyruvate, and triethanolamine buffer present in the reaction mixture were removed. (C) 1H NMR spectrum (and expansion) of the reaction mixture before precipitation of CTP with EtOH. Most of the CMP and 3-PGA originally present was converted to CTP and pyruvate (s, 2.2 ppm). Some dipyruvate (s, 1.2 ppm and 2 d, ~3 ppm) also formed. (D) 1H NMR spectrum (and expansion) of the reaction mixture after 18 h at 58% conversion of CMP to CTP.

GTP to GDP (according to analysis by 31P NMR) during workup. Further purification of GTP before use in enzyme-catalyzed synthesis is not necessary: we used GTP prepared from GMP to synthesize GDP-mannose (GDP-Man) in a reaction catalyzed by GDP-mannose pyrophosphorylase (GDP-Man PPhase, EC 2.7.7.13) isolated...
GTP + \alpha-Man-1-P \xrightarrow{\text{GDP-Man PPase}} GDP-Man + 2P_i \quad (2)

from brewers' yeast (eq 2).\(^{35}\)

An effort to replace guanylate kinase with the less expensive adenylyl kinase was not successful. We observed no production of GTP from GMP and ATP using the AdK/PK/PEP system in the presence of either Mg\(^{2+}\) or Mn\(^{2+}\).

Chemical Synthesis. Carboxyldimidazole Method. Following published procedures (Scheme II),\(^{21-24}\) we prepared ATP, CTP, UTP, and GTP from the corresponding NMPs as tri-n-alkylammonium salts in quantities of 1–5 g (\(\sim 1–10 \text{ mmol} \approx 75\%\) yield) after ion-exchange chromatography\(^{28}\) on DEAE-cellulose (Table II). Chromatography may not be necessary in certain applications: for example, unpurified UTP (containing pyrophosphate salts as the major contaminant) was used in the synthesis of UDP-glucose (UDP-Glc) in the presence of \(\alpha\)-D-glucose 1-phosphate (Glc-1-P), uridine-5'-diphosphogluco pyrophosphorylase (UDP-Glc PPase, EC 2.7.7.9), and inorganic pyrophosphatase (PPase, EC 3.6.1.1) (eq 3).\(^{35}\) UDP-Glc dehydrogenase (UDPGlc DH, EC 1.1.1.22) catalyzed the NAD\(^{+}\)-dependent oxidation of UDP-Glc to UDP-glucuronic acid (UDP-GlcUA);\(^{36}\) a coupled reaction recycled NAD\(^{+}\) using pyruvate and L-lactate dehydrogenase (LDH, EC 1.1.1.27) (eq 4).\(^{5}\)

\[
\text{UDP} + \alpha\text{-Glc-1-P} \xrightarrow{\text{UDPGlc PPase}} \text{UDP-Glc} + \text{P}_i \quad (3)
\]

Yields of the NTPs were approximately the same when either the tri-n-butylammonium salt or the tri-n-octylammonium salt of the NMPs were used. We used the tri-n-butylammonium salts for larger scale reactions because they are less expensive to prepare than the tri-n-octylammonium salts.

Several modifications of the published procedures improved the preparation of NTPs using the carboxyldimidazole method. The use of acetonitrile rather than dimethyformamide as the solvent simplified the workup, because acetonitrile is the more easily removed by evaporation. We found that only 4 molar equiv of 1.1'-carboxyldimidazole was required per equiv of NMP, rather than the reported five;\(^{2a}\) using fewer than 4 equiv was not convenient in organic chemistry laboratories. The enzymes were treated as off-the-shelf reagents, and were neither assayed nor immobilized (although all of the enzymes used have been immobilized in other work).\(^{39,40}\) We note that soluble enzymes can be recovered by ultrafiltration.\(^{44}\) We did add an antioxidant (2-mercaptoethanol or dithiothreitol) and performed the reactions in an atmosphere of nitrogen because most of the enzymes used have air-sensitive thiol groups. We preferred to use enzymes obtained as lyophilized powders to avoid

UTP. Deamination of CTP. Chemical deamination of CTP to UTP at 4 °C using sodium nitrite in aqueous acetic acid converted CTP to UTP (eq 5).\(^{37,38}\) We noted some decomposition of UTP to UDP and UMP according to analysis by thin-layer chromatography when the deamination was performed at room temperature.

This method is more convenient than the enzymatic synthesis of UTP from UMP. UTP obtained by this deamination route was used to produce UDP-glucose using UDP-Glc PPase (eq 3). The successful synthesis of UDP-Glc using UTP prepared by this procedure establishes that any NO\(_2\) carried through the purification does not deactivate UDP-Glc PPase (or, we presume, other enzymes).

Because NMPK is expensive and CTP easily obtained, we also examined the enzymatic deamination of CTP to UTP.\(^{35}\) In model systems, deamination of CMP to UMP with adenosine deaminase (EC 3.5.3.4) or with 5'-adenylic acid deaminase (EC 3.5.3.4.6) was not successful. We did not try to deaminate CTP using these enzymes.

Techniques for Monitoring Reactions. Several techniques are useful for monitoring the synthesis of NTPs. Thin-layer chromatography on PEI-cellulose is a particularly convenient analytical method.\(^{31,32}\) The characteristic chemical shifts and coupling patterns in the phosphorus and proton NMR spectra also allow quantitative analysis of the course of the reactions. Several methods using HPLC have also been described.\(^{28,30,40}\)

Purification. Many reports describe the purification of NTPs by ion-exchange chromatography.\(^{24,41}\) We did not require analytically pure material and simply precipitated the NTPs by adding ethanol (1:1, v/v) following the enzyme-catalyzed reactions. Pyruvate and contaminating inorganic and buffer salts do not precipitate to a significant extent under these conditions.\(^{42}\) The NTPs obtained in this way can be used in enzyme-catalyzed reactions without further purification. If pure material is desired, this initial precipitation step simplifies purification by ion-exchange chromatography.

Manipulation of Enzymes. The intent of this study was to develop methods to synthesize the NTPs that could be performed conveniently in organic chemistry laboratories. The enzymes were treated as off-the-shelf reagents and were neither assayed nor immobilized (although all of the enzymes used have been immobilized in other work).\(^{39,40}\) We note that soluble enzymes can be recovered by ultrafiltration.\(^{44}\) We did add an antioxidant (2-mercaptoethanol or dithiothreitol) and performed the reactions in an atmosphere of nitrogen because most of the enzymes used have air-sensitive thiol groups. We preferred to use enzymes obtained as lyophilized powders to avoid
the precipitation of magnesium ammonium phosphate salts that often occurs when suspensions in ammonium sulfate are used.

Conclusion

Methods primarily based on enzymatic synthesis rather than on chemical synthesis are most convenient for the synthesis of CTP and GTP (eq 6 and eq 7). UTP is best synthesized from CMP by using a two-step procedure involving both enzymatic and nonenzymatic steps (eq 6). The most convenient preparation of PEP for these reactions is that based on in situ conversion of 3-PGA. Simple precipitation of the NTPs with ethanol yields material of sufficient purity for use in enzyme-catalyzed synthesis. A summary of the best method to make each NTP is thus: CTP, adenylyl kinase/PGA method; GTP, guanylate kinase/PGA method; UTP, deamination of CTP with NaNO₂/AcOH.

Experimental Section

Materials and Methods. Adenosine deaminase from calf intestinal mucosa, EC 3.5.4.4), adenylyl kinase (from chicken muscle, EC 2.7.4.3), 3'-adenylic acid deaminase (from Aspergillus sp., EC 3.5.4.6), enolase (from baker’s yeast, EC 4.2.1.11), guanylate kinase (from bovine brain, EC 2.7.7.7), nucleosidemonophosphate kinase (from bovine liver EC 2.7.4.4), pyruvate kinase (from rabbit muscle, EC 2.7.1.40), and uridine-5'-diphosphoglucose pyrophosphorylase (from baker’s yeast, EC 2.7.7.9) were lyophilized powders from Sigma. Alkaline phosphatase (from Escherichia coli, EC 3.1.3.1), phosphoglycerate mutase (from baker’s yeast, EC 2.7.5.1), and 1-lactate dehydrogenase (from rabbit muscle, EC 1.1.1.27) were crystalline suspensions in solutions of ammonium sulfate from Sigma. GDP-mannose pyrophosphorylase (EC 2.7.7.15) was isolated from brewers’ yeast (US Biochemical, or Sigma). The potassium salt of PEP was synthesized from pyruvic acid as described.13 The lH and 31P NMR spectra of the nucleoside triphosphates and nucleoside diphosphates were determined by an off-white powder containing 202 mmol of CTP, 93% yield based on CMP, 90% purity for CTP-K₃; the water content (7.1%) was determined by the Karl Fischer method. Thin-layer chromatography (polyethylenimine-cellulose, eluant, 2.0 M HCOOH/2.0 M LiCl, 1:1, v/v) indicated that ATP was present in addition to CTP; neither CMP nor GTP were detected. Analysis by 1H and 31P NMR spectroscopy indicated that ~1% each of ATP, diphosphate, 3-PGA, inorganic phosphate, and ethanol were present.

Guanosine 5'-Triphosphate (GK PK PGA Method). A suspension of 15 g of 3-PGA (barium salt, dihydrate, ~95%, 52 mmol) in 100 mL of water was stirred with ~100 mL of ion-exchange resin (Ca⁺ form) for 4 h. Most of the material dissolved, but a fine, silky, white suspension remained. The resin and suspension were removed by filtration and washed twice with 50-mL portions of water. The combined, clear filtrates were used directly in the next step.

(45) The estimated costs (based on research-scale quantities from US Biochemicals or Aldrich) of the phosphorylating agents would be conversion of 1 mol of a nucleoside monophosphate to the triphosphate according to the methods presented are comparable: based on 2.5 mol of 3-PGA, $738 (see footnote 25); based on 4 mol of carbonyl diimidazole ($700) and 4 mol of pyrophosphoric acid ($64), $784. This comparison does not account for costs of solvents and their disposal. In practice, if economic factors rather than convenience were the most important consideration, the phosphorylating reagents would be synthesized from inexpensive precursors in each case.

(47) The two-step addition is not required by the procedure but simply reflects the fact that an insufficient amount of 3-PGA was added initially because of inadequate washing of the ion-exchange resin.
the solution was deaerated for 30 min with nitrogen. Guanylate kinase (10 U), pyruvate kinase (1000 U), and phosphoglycerate mutase (1000 U) were then added and the solution was stirred under a positive pressure of nitrogen. Addition of 1 M HCl maintained the pH at 7.5–7.7 during the course of the reaction. After 5 days, 48.6 mL of 1 M HCl had been consumed and analysis by thin-layer chromatography (polyethyleneimine-cellulose; eluant, 1.0 M LiCl/0.5 M (NH₄)₂SO₄, 1:1, v/v) and ³¹P NMR spectroscopy indicated that the reaction was >95% complete.

For isolation of GTP, 350 mL of absolute ethanol was added to the solution (350 mL). The resulting precipitate was collected by centrifugation (10000 g, 10 min) and was dissolved in 300 mL of water. Additional ethanol (300 mL) was added and the centrifugation step was repeated. Lyophilization of the pellet provided 18 mmol of GTP (86% yield) according to enzymatic analysis (88% purity for GTP-Na₂).

According to analysis by ³¹P NMR spectroscopy, some GDP provided 1,2 g of a white powder containing 18 mmol of GTP (82% yield) after a second ethanol precipitation step was repeated. Lyophilization of the pellet provided 1,2 g of a white powder containing 18 mmol of GTP (82% yield) according to enzymatic analysis (88% purity for GTP-Na₂).

Isolation of GTP by precipitation with ethanol as described above provided 12 g of a white powder containing 16 mmol of GTP (86% yield) according to enzymatic analysis (91% purity for GTP-Na₂).

Guanosine 5'-Triphosphate (AdK/PK/PGA Method). The reaction was performed as described for GTP using the GK/PK/PGA method. The initial solution contained UMP-Na₂·2H₂O (10.0 g, 24 mmol), 3-PGA (19 g, 58 mmol, of the barium salt was converted to the sodium form), ATP-Na₂·3H₂O (150 mg, 0.24 mmol), MgCl₂·6H₂O (5.1 g, 25 mmol), KCl (1.9 g, 25 mmol), Tris-HCl (3.15 g, 0.24 mmol, dithiothreitol (100 mg), adenylate kinase (10000 U), pyruvate kinase (1000 U), and phosphoglycerate mutase (1000 U) in a total volume of 200 mL of water (pH 7.7). After 5 days, 36.0 mL of 1 M HCl had been consumed. Precipitation of UTP with ethanol as described above provided 12 g of a white powder containing 22 mmol of UTP (92% yield, >95% purity for UTP-Na₂).

Adenosine 5'-Triphosphate (AdK/PK/PGA Method). The reaction was performed as described for GTP using the GK/PK/PGA method. The initial solution contained AMP-Na₂·H₂O (8.2 g, 20 mmol), 3-PGA (18 g, 44 mmol, of the barium salt was converted to the sodium form), ATP-Na₂·3H₂O (17 mmol), MgCl₂·6H₂O (4.0 g, 20 mmol), KCl (1.5 g, 20 mmol), Tris-HCl (400 mg), dithiothreitol (100 mg), adenylate kinase (1000 U), pyruvate kinase (1000 U), enolase (500 U), and phosphoglycerate mutase (1000 U) in a total volume of 100 mL of water (pH 7.7). After 1 day, 29.6 mL of 1 M HCl had been consumed. Precipitation of ATP with ethanol as described above provided 9 g of a white powder containing 16 mmol of ATP (80% yield) according to enzymatic analysis (98% purity for ATP-Na₂).

Chemical Syntheses: General Procedures. Free Acids of Nucleoside Mono- and Diphosphates. Each nucleoside monophosphate di/tri-n-butylammonium salt (1 mmol) was dissolved in 25 mL of water and stirred with 5 mL of an exchange resin Dowex 50W-X8, H⁺ form, 50–100 mesh for 1 h. The solution was decanted and the resin was washed 5 times with 50 mL portions of water. Rotary evaporation of the combined aqueous solutions at reduced pressure provided the free acids as amorphous powders.

Tri-n-butylammonium Salts of Nucleoside Mono- and Diphosphates. The free acid of a nucleoside monophosphate (1.0 mmol) was suspended in a mixture of 10.0 mL of MeOH and 10.0 mL of tri-n-butylamine (18.5 g, 0.10 mmol) was added, the reaction mixture was refluxed until the solid dissolved (∼1 h). The solution was cooled and evaporated. The residue was dried by repeated addition and evaporation of 10 mL of dioxane. The salt was obtained in quantitative yield after drying at ∼0.1 Torr over CaSO₄.

Standard Solution of Tri-n-butylammonium Phosphorpyrophosphate. A suspension of anhydrous phosphorpyrophoric acid (17.8 g, 0.10 mol) in 80 mL of acetonitrile in a 100-mL volumetric flask was cooled in an ice bath and tri-n-butylamine (18.5 g, 0.10 mol) was added. Once the solid dissolved (∼1 h), the solution was allowed to warm to room temperature. Addition of acetonitrile to a final volume of 100 mL provided a 1.0 M standard solution of tri-n-butylammonium pyrophosphate.

Preparation of Nucleoside Triphosphates. The following reaction was performed under an atmosphere of argon. The nucleoside monophosphate tri-n-butylammonium salt (1 mmol) and carbonylidimideazole (4 mmol) were placed in a flame-dried flask sealed with a silicone septum. Acetonitrile (20 mL) was added and the reaction mixture was stirred for ∼1 h. MeOH (3 mmol) was then added. After 30 min, an aliquot of the standard pyrophosphate solution (4 mL, 4 mmol) was added. After 1 day, the solution was removed by rotary evaporation at reduced pressure and the residue treated with 20 mL of MeOH. The resulting precipitate was removed by filtration and washed with ∼10 mL of MeOH. The combined solutions were concentrated to ∼25 mL and a saturated solution of NaClO₃ in acetone was added (∼20 mL) followed by diethyl ether (5 mL). The resulting precipitate contains the sodium salts of the nucleoside triphosphate and pyrophosphoric acid. In the case of UTP, this mixture was used directly in the synthesis of UDP-Glc. The nucleoside triphosphates were purified by anion-exchange chromatography.