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Thin gold films placed in contact on compliant elastomeric poly(dimethylsiloxane)
supports weld together. This “cold welding” is remarkable both for the low loads
required and for the fact that it occurs under ambient laboratory conditions, condi-
tions in which the gold surfaces are covered with films of weakly adsorbed organic
impurities. These impurities are probably displaced laterally during the welding.
Welding can be prevented by the presence of a self-assembled gold(I) alkylthiolate
monolayer on the gold surfaces. The welded contacts have low electrical resistivity and
can be made thin enough to transmit light. This system is a promising one with which

to study interaction between interfaces.

ELDING OF METALS UNDER AM-
bient conditions (“cold weld-
ing”) has been practiced for more

than 700 years, but only with high applied
pressures (such as under the impact of a
smith’s hammer) or with frictional work
(1-3). The adhesion of metals in ultrahigh
vacuum (UHV) under light loads is also
known (4) but requires flat, ductile, and
atomically clean surfaces. In this report we
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describe the self-adhesion of thin gold films
on elastomeric supports, under ambient lab-
oratory conditions, with very small applied
loads (Fig. 1). Adhesive bonding of metal
surfaces under ambient laboratory condi-
tions—that is, in the presence of air, humid-
ity, and volatile organic contaminants—and
with very small applied loads (<0.1 to 0.2
g/cm?) (5) is therefore remarkable. For self-
adhesion of these “dirty,” supported films of
gold, an underlying elastomeric support is
required. The self-adhesion is inhibited or
prevented by monolayer films [self-assem-
bled monolayers (SAMs)] less than 1 nm
thick on the gold.

We prepared the systems by the proce-
dure summarized in Fig. 1. Treatment of a

film of poly(dimethylsiloxane) (PDMS) (6)
with a radio frequency, oxygen plasma
formed a thin [<50 A by x-ray photoelec-
tron spectroscopy (XPS)] silica-like layer on
its surface. We denote this oxidized surface
as PDMS/SiO,: its surface chemistry is sim-
ilar to that of SiO, (7). Chemisorption of
11-trichlorosilylundecyl thioacetate [Cl,Si-
(CH,),,SCOCH,;] from the vapor phase
onto PDMS/SiO, produced a monolayer of
the corresponding alkylsiloxane (8, 9). Thin
films of gold (~20 nm), thermally evaporat-
ed onto the surface of the PDMS-bound
SAM (9-11), adhered well to it (9, 12, 13).

When placed in contact, two gold films
supported on 1 cm by 1 cm squares of
PDMS adhered strongly across the gold-
gold interface. Failure occurred by decohe-
sion within the polymer (the tear strength of
the PDMS used here is 2.7 x 10° g/cm)
(14). We hypothesize that the elasticity and
compliance of PDMS allow the gold surfac-
es to conform to one another, increasing the
area of gold-gold contact and tangentially
displacing loosely adsorbed contaminants
(15). This hvpothesis implies the possible
formation of “islands™ of the contaminants
at the gold-gold interface.

We measured the strength of adhesion by
using an apparatus reported separately ().
A small (radius of curvature = 1.31 to 1.34
mm) hemispherical lens of PDMS and a flat
sheet of PDMS were allowed to come into
contact in the absence of an applied load.
For two surfaces of unmodified PDMS, the
pull-off force was 0.034 dyne for an initial
area of conract at zero load of 4.45 x 10~*
cm?. We characterize this adhesion as
“tacky,” because the area of contact de-
creased with increasing negative load. The
pull-off force for the two gold films support-
ed on PDMS was 3.33 dyne for an initial
area of contact of 3.53 X 10™* cm?. In this
case, the area of contact did not decrease
with increasing negative load; rather, cohe-
sive failure occurred within the flat sheet of
PDMS. We conclude that this pull-off force
is a lower limit of the strength of adhesion
across the gold-gold interface and that these
results rule out the possibility that the weld-
ing is actually tacky adhesion arising from
organic contaminants at the interface.

Chemisorbed monolayers of alkyl thio-
lates at the surfaces of these gold films
prevented welding. Treatment of one of the
films with ethanoethiol vapor for 5 to 10 s
greatly reduced the strength of adhesion;
that is, the films were easily separated and
adhesive failure occurred at the “gold-gold”
interface. This “weak” adhesion was similar
in strength and character to the tackiness
between sheets of unmodified PDMS (16).
As expected, gold films bearing ordered
SAMs of longer chain alkyl thiolates (17)
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Fig. 1. Schematic illustration of the structure of the supported films of gold and gold-gold welding.
PDMS = poly(dimethylsiloxane); SiO, = silicon dioxide overlaver; SAM = self-assembled monolaver
prepared by adsorption of 11-trichlorosilylundecyl thioacetate; Au = evaporated film of gold.

[HS(CH,),,CH;, HS(CH,),;CH;, and
HS(CH,),sCH;]| also showed only weak
adhesion. The pull-oft force for two of these
surfaces [bearing SAMs of HS(CH,),,-
CH;] was 0.037 dvne for an inittal arca of
contact of 3.50 x 10" * ¢m”. We presume
that these thin (5 to 25 A) films exert their
influence by preventing atomic contact of
the gold surfaces.

It seems to be necessary to have at least
one gold film supported on a compliant
elastomer in order for cold welding to occur
under these conditions. We observed weld-
ing between a sample of the gold on a
PDMS square 1 ¢cm by 1 cm and gold
condensed very slowly (0.3 to 0.4 A/s) onto
a glass, microscope cover slip (18). We
observed only weak (tacky) adhesion, how-
ever, between samples of gold on PDMS
and gold condensed at or above 1 to 3 10\/5
onto a glass microscope slide (19).

The composite films (PDMS/S10,/mono-
layer/Au/Au/monolaver/Si0,/PDMS)  de-
scribed in this report were optically trans-
parent and provide an opportunity for
optical microscopic and spectroscopic (ul-
traviolet-visible) analvsis of the gold-gold
interface. Preliminary experiments, in which
we used simple patterned surfaces formed by
shadowing portions of the polvmer film
during evaporation of the gold, have estab-
lished that the gold-gold contacts show little
electrical resistance (<0.4 ohmjem?) (20).

Cold welding requires atomic contact be-
tween the surfaces that are joining. These
clean surfaces are probably generated in the
system described here by lateral displace-
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ment of contaminants on the gold surface.
This displacement is facilitated by the clas-
tomeric and compliant support. Although
cold welding 15 a well-known phenomenon
in other circumstances, 1ts occurrence be-
rween “dirny™ metal surfaces, under ambient
atmospheres, at verv small applied pressure
is unexpected. A number of characteristics of
this system make it a particularly attractive
one with which to studv cold welding. The
mechanical properties of the PDMS clas-
tomer are casily varied. The thicknesses of
the S10, laver, the gold film, and the SAM
coupling laver can be controlled. The system
is verv sensitive to alkane thiolates adsorbed
on the gold, and the techniques developed
in studving these SAMs (17) are applicable
to understanding this sensitivity. The entire
svstem 1s optically transparent and can be
examined by absorption spectroscopy. The
welds are clectrically conducting: this con-
ductivity may be useful in characterizing
them and may also provide the basis for
methods of fabricating novel types of clec-
trical circuits.
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