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This article describes the fabrication and operating principles of a device suitable for measuring
displacements, stresses, strains, accelerations, and forces. The device consists of an elastomeric
material with a surface relief diffraction grating embossed on its surface. Mechanical compression
of this element changes the way that it diffracts light. This article also describes designs and
performance characteristics of simple accelerometers and pressure sensors based on these devices.
© 1996 American Institute of Physics.@S0034-6748~96!05109-X#

I. INTRODUCTION

This article describes a new kind of device—an elasto-
meric element having a relief grating embossed on its
surface—for measuring displacements, strains, stresses,
forces, and accelerations. In this device, mechanical com-
pression controls the relative optical path of light passing
through it. As a result, the optical phase and therefore the
pattern of diffraction are coupled to the compression. This
report describes the fabrication and operation of the device
and illustrates its application in a simple accelerometer and a
pressure sensor.

There are many techniques for measuring displacements,
strains, stresses, and accelerations. Optical interferometry,
one of the most common methods for determining displace-
ments, has sensitivity in the nanometer range.1 Other meth-
ods with sensitivities in the micron and submicron range
include measurements of changes in capacitance2 and phase-
sensitive detection of the reflection of ultrasonic waves.3

Stresses and strains can be determined by changes in the
birefringence of strongly photoelastic samples caused by
deformation.4 Surface strains can be determined by measur-
ing the change in wavelength of a diffraction grating at-
tached to the sample.5 Characteristics such as ease of use and
fabrication, low cost, and insensitivity to optical alignment
make the elastomeric phase gratings described in this article
an attractive alternative to these other methods.

This article is organized into five parts:~i! We begin in
the theory section with a brief, qualitative description of how
light diffracts from the gratings before and during compres-
sion.~ii ! We present a simple analytical model that describes
the optical properties of the elastomeric binary phase grat-
ings as they are compressed. Finite element modeling iden-
tifies the limitations of this model.~iii ! We describe the fab-
rication of the gratings and present results obtained from
gratings in different optical configurations.~iv! In the experi-
mental section, we describe the design and performance of
an accelerometer and a pressure sensor that are based on
compression of an elastomeric binary phase grating.~v! Fi-
nally, in the results and discussion section, we compare the
experimental results to computations.

II. THEORY

A. Qualitative description of the elastomeric binary
phase grating

Sensors based on elastomeric binary phase gratings op-
erate by simple principles. The gratings have relief structure
on their surface that diffracts light passing through or reflect-
ing from them. The period of the grating determines the
separation of the diffracted orders, and the depth of the sur-
face relief determines their relative intensities. Compressing
the grating in the out-of-plane direction reduces the depth of
the surface relief and changes the intensity of each of the
diffracted orders. Figure 1 shows one possible means for
achieving the compression, the mechanical response of the
grating to this compression, and one possible configuration
for generating diffracted light. The change in intensity of the
diffracted orders induced by compression is large~.17 dB!,
and can be related quantitatively to the degree of compres-
sion. The relationship between the change in intensity of the
diffracted orders and the mechanical compression is the fo-
cus of the next three sections.

B. Optical response

To provide a semiquantitative understanding of the opti-
cal behavior of the binary elastomeric phase grating, we de-
velop a simple model to compute the diffraction pattern as a
function of the index of refraction of the elastomer and the
surroundings, and of the depth of the surface relief. Figure 2
illustrates the coordinate system. We assume that the optical
field has infinite extent alongx andy, and that there are an
infinite number of grating lines extending infinitely and ori-
ented along they axis. In this case, the optical field just after
the grating (z502) is related to the optical field just before
the grating (z501) by

E~x,z502!5E~z501!t~x!, ~1!

wheret(x) is the transmission function of the grating. The
Fraunhofer diffraction patternE(x8,z8) is given by the Fou-
rier transformation of the transmission function,t(x), evalu-
ated at the spatial frequencyx8/lz8, wherel is the wave-
length of the light.6,7
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For present purposes, we assume that the transmission
function is binary and remains so during compression. For a
grating with equal linewidths and spaces,

t~x!5H eiw 2nL,x,~2n11!L nPI

1 otherwise
, ~2!

wherew is the depth of modulation of the phase, andL is the
width and spacing of the lines of the grating. The magnitude
of w depends on the initial depth of the surface relief, the
index of refraction of the elastomer and the surroundings~air
in this case!, and on the degree of compression. If the surface

relief of the grating is in contact with a reflective surface,
and the diffraction pattern is monitored in reflection, then Eq.
~2! must be modified by replacingw with 2w. Figure 3
shows calculated diffraction patterns forw50, p/4, p/2,
3p/4, andp.

The configuration for diffracting light from a grating de-
termines how rapidly the diffraction pattern changes as the
depth of surface relief changes. By using the reflection con-
figuration described above, or by passing light through the
grating multiple times, the sensitivity of the diffraction pat-
tern to changes in relief can be increased relative to that

FIG. 1. An elastomeric element with a surface relief grating is compressed between two optically transparent rigid plates. Pressure applied to the plates
compresses the grating, thereby decreasing the relief of the grating. This change in relief alters, in a well-defined manner, the way that light diffracts from the
grating. Finite-element modeling illustrates how the structure of the surface relief changes with the strain.
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achieved by passing light through the grating once. In par-
ticular, aftern passes through the grating, the intensity of the
zeroth order beam is given by

I 0
~n!}Rn, ~3!

whereR represents the efficiency of diffraction into the ze-
roth order for a single pass. Figure 4 illustrates the intensity
of the zeroth order diffracted beam as a function of the depth
of modulation of the optical phase for one, two, and four
passes through a binary grating. Figure 4 also illustrates the
response expected for operation in the reflection configura-
tion.

C. Mechanical response and coupling to the optical
response

This section models the response of the optical phasew
@Eq. ~2!#, to compression. The model describes how the op-
tical phase depends on the geometry of the grating and how
the grating moves during compression. Accurate determina-
tion of the material displacements and the phase requires a
treatment of the mechanics that explicitly includes the sur-
face relief structure. Although such a treatment is beyond the
scope of a simple analytical description, a semiquantitative
understanding can be obtained by examining displacements
in a body without a surface relief grating, and by assuming
that the binary shape of the surface of the uncompressed
grating remains unchanged during the compression. Finite
element calculations described in the next section illustrate
the exact~linear! behavior of the elastomeric grating upon
compression.

Figure 2 defines the coordinate system. For linear elastic
materials, a uniform axial stress~Tzz5F/A, whereF is the
force perpendicular to the surface of the plates used for com-
pression andA is the area of the elastomeric element! pro-
duces a uniform axial strain (ezz) given by

Tzz52Eezz, ~4!

whereE is the Young’s modulus.Tzz also causes expansions
in thex andy directions. These expansions are related to the
magnitude of the compression alongz and the Poisson’s ratio
~s! by

exx5eyy52sezz. ~5!

Equations~4! and ~5! determine displacements throughout
the material. These displacements are given by

ux~x,y,z!5
sTzz
E

x, ~6!

uy~x,y,z!5
sTzz
E

y, ~7!

uz~x,y,z!52
Tzz
E

z. ~8!

The change in the depth of the modulation of the optical
phaseDw can be defined as

Dw5w02w1 , ~9!

wherew0 is the depth of modulation of the phase associated
with the uncompressed grating andw1 is that associated with
the compressed grating. These phases are related to the un-
compressed (d0) and compressed (d1) depths of surface re-
lief by

Dw5
2p

l
~ne2na!d02

2p

l
~ne2na!d1

5
2p

l
~ne2na!~d02d1!, ~10!

wherene and na are the indices of refraction for the elas-
tomer and the air, respectively, andl is the wavelength of
light.

FIG. 2. Definition of axes and geometrical quantities for optical and me-
chanical calculations.

FIG. 3. Diffraction pattern generated by passage of light through a binary
phase grating as the depth of modulation of the phase is varied from 0 top
radians in increments ofp/4.
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For small compressions, we expect that the change in the
depth of the surface relief (d02d1) is approximately linearly
related to thez displacement of an element with a flat surface
at a depth equal to the depth of the uncompressed relief

d12d0}uz~z5d0!. ~11!

With this relation

Dw}uz~z5d0!5
2Tzzd0

E
5

2Fd0
AE

. ~12!

Using the relationship between the stress and strain, and the
definitions of these quantities

Tzz5
F

A
52Eezz52E

Dh

h
~13!

and Eq.~12! can be rewritten as

Dw}
2d0Dh

h
52d0ezz, ~14!

whereDh is the distance of compression, andh is the unde-
formed thickness of the elastomer.

D. Response time

The resonance frequency for out-of-plane compressions
determines the response time of the grating. The relevant
equation of motion~neglecting damping! is

]2uz
]t2

5
E

r

]2uz
]z2

. ~15!

Solutions to this equation show that, for a grating element of
thicknessh and densityr, the resonant frequency for the
out-of-plane breathing mode of motion is

n5
1

4h SEr D 1/2. ~16!

For typical elastomeric materials8 ~E;2–3 MPa and
r;1500 kg/m3! this frequency is in the kHz range for grat-
ings with thicknesses,1 cm, and in the MHz range for
thicknesses,10 mm.

E. Finite-element modeling: Inadequacies of the
simple model

The simple mechanical and optical model described
above neglects much of what happens when the grating is
compressed. Finite-element calculations show how the grat-
ing actually deforms.~The calculations were performed in
the plane-strain approximation. We assumed that the grating
element sticks well to the plates used for compression, so
that lateral displacements at the top and bottom of the ele-
ment were zero. Stress-free boundary conditions were used
at the sides of the element, and the load was applied perpen-
dicular to the surfaces. All calculations were performed in
the linear regime, with a Poisson’s ratio of 0.45.! Figure 5
illustrates the deformed finite element meshes at four differ-
ent strains typical of those examined experimentally. Figure
5 shows that the grating does not maintain a binary shape
during the compression. Deviations arising from bending of
the relief pillars will be most pronounced for gratings with
depths of surface relief that are considerably larger than the
period of the grating. Deviations arising from ‘‘sagging’’ of
the recessed regions will be most pronounced for gratings
with depths of surface relief that are considerably smaller
than the period of the grating. As we will show in the results

FIG. 4. Calculations of the intensity of the zeroth order diffracted beam generated by passage through or reflection from a binary grating. The rate of change
of the zeroth order intensity increases as the number of passages of light through the grating increases. Reflection from the grating effectively increases the
depth of modulation of the phase by a factor of 2.
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and discussion section, for the gratings examined here, the
simple analytical model accounts for most of the important
optical characteristics.

III. EXPERIMENT

In this section, we describe the fabrication of elastomeric
binary phase gratings. We also demonstrate their optical re-
sponse and how this response changes during compression.
Finally, we describe the design and operation of two devices,
an accelerometer and a pressure sensor.

A. Fabrication of elastomeric binary phase gratings

Binary elastomeric phase gratings were fabricated by
casting poly-dimethysiloxane~PDMS! over photolitho-
graphically patterned photoresist on silicon. Once cured, the
PDMS was removed from the photoresist, leaving a relief
structure with the geometry of the patterned photoresist em-
bossed on its surface. The spin speed for application of the
photoresist, and the photolithography determined the dimen-
sions of the pattern. For the binary gratings studied here, the
thickness of the photoresist was between 1 and 2mm, and
the pattern consisted of two micron lines separated by two
microns. The thickness of the PDMS was between 0.5 and 5
mm.

B. Optical properties of the uncompressed gratings

A series of binary phase gratings with different depths of
surface relief were produced following the procedure de-
scribed in the preceding section. Figure 6 illustrates how

these gratings diffract light out of the zeroth order beam. As
the spin speed for applying the photoresist changes, the
depth of surface relief and the diffraction properties of the
gratings change. As Fig. 6 indicates, changes in the depth of
surface relief by fractions of a micron induce large changes
in the intensity of the zeroth order diffracted beam. This
sensitivity to the depth of surface relief provides the basis for
a device that is sensitive to dimensional changes caused by
compression or other mechanisms.

C. Optical response during mechanical compression

To determine how the optical response of the elasto-
meric grating is related to mechanical compression and to the
dimensions of the grating, we performed measurements with
gratings having different geometries. Figure 7 illustrates the
different configurations for the measurements, and intro-
duces terminology that is used throughout the remainder of
this article. We note that compression of all of the gratings
was reversible and reproducible during the several hundred
cycles of compression investigated in this study.

1. The effect of physical properties on the optical
response

To illustrate the ability to change the pattern of diffrac-
tion reversibly by mechanically compressing an elastomeric
phase grating, a 3.0-mm-thick grating with 1.2mm deep re-
lief on its surface was compressed in the out-of-plane direc-
tion by mounting the grating between microscope slides at-
tached to mirror mounts on calibrated translation stages.
Using the transmission configuration, the efficiencies for dif-
fraction of red~He–Ne! and green~Ar1! laser light into the
zeroth and first orders were measured with a photodiode as a
function of displacement~Fig. 8!. Approximately 15% strain
switched the grating from efficient transmission to strong
diffraction. As the data show, for strains of this magnitude,
the compression is elastic, and therefore reversible.~The
solid lines in Fig. 8 indicate computations using the simple

FIG. 5. Finite-element calculations of the deformation of an elastomeric
binary phase grating caused by compression. The distorted finite-element
mesh is illustrated at strains of 1%, 2%, 5%, 10%, and 15%. These simula-
tions indicate that compressions induce deviations from a square wave
shape.

FIG. 6. Zeroth order diffraction efficiencies for green light diffracted from
uncompressed elastomeric binary phase gratings as a function of the spin
speed and thickness of the photoresist from which the grating was cast. The
data include gratings cast from two different formulations of photoresist:
Shipley 1818 and 1822.
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model described in the theory section. The results and dis-
cussion section describes these computations in detail.!

To investigate how the response of the grating changes
with the overall thickness of the elastomer, 5.2- and 1.2-mm-
thick gratings with 1.8mm deep surface relief were com-
pressed and the intensity of the zeroth order beam was re-
corded in the transmission configuration as a function of the
compressive displacement~Fig. 9!. Qualitatively, these data
indicate that the response of the grating is a function of the
strain. They also indicate that for a given surface relief struc-
ture, the sensitivity to displacement increases as the overall
thickness of the grating decreases.

To characterize how the response of the grating changes
with the uncompressed depth of surface relief, 5.2- and 4.9-
mm-thick gratings with 1.8 and 1.2-mm-deep relief structure,
respectively, were compressed and the intensities of the ze-
roth order beams were recorded as a function of displace-
ment. Measurements were made using the transmission con-
figuration ~Fig. 10!. These data show that for a given
thickness, the sensitivity to displacements and to strains in-
creases as the depth of the surface relief structure increases.

FIG. 7. Schematic illustrations of the different configurations used for mea-
suring the optical response of the elastomeric gratings. The terminology
introduced in this figure is used throughout the article.

FIG. 8. Diffraction efficiencies measured~h during compressing;s during
releasing! and calculated~solid lines! for a binary elastomeric phase grating
as a function of compressive strain.~A and B! are, respectively, diffraction
efficiencies of the zeroth and first order beams using 514 nm laser light.~C
and D! are, respectively, efficiencies for diffraction into the zeroth and first
order beams using 632 nm laser light. Data represented by squares and
circles were collected during two cycles of compression and release, respec-
tively.

FIG. 9. Intensity of the zeroth order beam generated from passage of 514
nm light through 1.2- and 5.2-mm-thick elastomeric gratings with 1.8-mm-
deep surface relief~a! as a function of displacement and~b! as a function of
strain of the rigid plates used to perform the compression. These results
indicate that the change of the intensity of the zeroth order beam depends on
the strain.
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2. The effect of the configuration of the optical probe
on the response

To understand how the optical arrangement changes the
response of the grating, a 4.9-mm-thick grating with 1.2mm
relief was compressed between transparent and reflective
plates and the intensity of the zeroth order beam was mea-
sured as a function of displacement. These measurements
were made once with the relief structure in contact with the
reflective plate and once with the relief structure in contact
with the transparent plate@Fig. 11~A!#. The data indicate that
the sensitivity to displacements is higher in the reflection or
the double passed configurations than in the transmission
configuration.

In a second experiment, a 4.9-mm-thick grating with 1.2
mm relief was compressed and the intensity of the zeroth
order beam generated from four passes through the grating
was measured as a function of displacement@Fig. 11~B!#.
The data indicate that the sensitivity to displacements is

higher in the quadruple passed configuration than it is in the
transmission configuration.

D. Examples of devices based on elastomeric binary
phase gratings

1. A simple accelerometer

To illustrate one application of the elastomeric grating,
we constructed a simple device to measure accelerations. In
this accelerometer, a mass mounted on a freely moving pis-
ton is connected to a reflective rigid plate that is attached to
one side of the grating. The other side of the grating is at-
tached to a transparent rigid support~Fig. 12!. An accelera-
tion of this device along the direction that the piston can
move compresses the grating and changes the intensity of the
zeroth order diffracted beam. This change in intensity can be
related to the magnitude of the acceleration. Since we did not
have a simple means to subject the device to controlled ac-
celerations, we mounted the accelerometer in a vertical con-
figuration and varied the mass. Figure 13 shows the results of
these measurements. These data indicate that the response is
sensitive to the mass~acceleration! and scales with the com-

FIG. 10. Intensity of the zeroth order beam generated from passage of 514
nm light through 4.9- and 5.2-mm-thick elastomeric gratings with 1.2- and
1.8-mm-deep surface relief, respectively,~a! as a function of displacement
and ~b! as a function of strain of the rigid plates used to perform the com-
pression. These results indicate that the sensitivity of the intensity of the
zeroth order beam to displacement and strain depends on the initial depth of
surface relief.

FIG. 11. ~A! Intensity of the zeroth order beam generated in the transmis-
sion, reflection and double passed configurations with 514 nm light and a
4.9-mm-thick elastomeric grating with 1.2-mm-deep surface relief as a func-
tion of the displacement of the rigid plates used to perform the compression.
~B! Intensity of the zeroth order beam generated in the transmission and
quadruple passed configurations with 514 nm light and a 4.9-mm-thick elas-
tomeric grating with 1.2-mm-deep surface relief as a function of the dis-
placement of the rigid plates used to perform the compression.
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pressive stress. As a result, the lateral dimensions of the elas-
tomeric grating and the mass can be varied to adjust the
range of sensitivity to accelerations.

2. A simple pressure sensor

We also fabricated a device sensitive to pressure
changes. A thin~;0.5 mm! grating covering an opening~2
mm in diameter! in a flow cell formed the basis of the de-
vice. The surface relief of the grating was oriented away
from the opening in the flow cell, and was held tightly
against a glass slide. Pressure inside the cell compressed the
grating against the glass slide, and changed the pattern of
diffraction. Figure 14 schematically illustrates the device. To
characterize the device, the flow cell was connected to the
regulator of a high-pressure nitrogen tank. We measured the
intensity of the zeroth order diffracted beam as a function of
applied nitrogen pressure@Fig. 15~a!#. Pressurizing the flow
cell with water produced similar results. Figure 15~b! illus-
trates the transient response.

IV. RESULTS AND DISCUSSION

This section shows that the simple mechanical and opti-
cal analysis introduced in the theory section accounts for
many features of the data. First, consider the data illustrated
in Fig. 8. Results from the theory section@Eqs.~2! and~14!#
determine efficiencies for diffraction into the various orders
as a function of the strain, given the constant of proportion-
ality between strain and optical phase. By fitting the depen-
dence of the intensity of the 514 nm first order diffracted
light on the compressive strain to computations using Eqs.

FIG. 12. Schematic illustration of an accelerometer based on an elastomeric
binary phase grating. Upon acceleration, the mass compresses the grating
and changes the way that light is diffracted. This change is related to the
magnitude of the acceleration.

FIG. 13. Intensity of the zeroth order beam generated from passage of 514
nm light through 4.9-mm-thick elastomeric gratings with 1.2-mm-deep sur-
face relief with lateral dimensions 537 and 8310 mm ~a! as a function of
the mass used to compress the grating and~b! as a function of compressive
stress generated by the mass. These results indicate that the change in zeroth
order beam intensity depends on the stress.

FIG. 14. Schematic illustration of a pressure sensor based on an elastomeric
binary phase grating. Fluid pressure from the inside of the flow cell com-
presses the thin grating against a glass slide.
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~1!, ~2!, and~14!, we determined this constant of proportion-
ality. With this constant, we computed the intensities of the
other diffracted orders~for both 514 and 633 nm light! as a
function of strain. The solid lines in Fig. 8 illustrate the
results. The calculations show good agreement with the data.

Other measurements also show agreement with the
simple mechanical and optical model. For example, Fig. 9
shows that diffraction patterns from gratings with different
thicknesses have the same dependence on the strain. This
result is consistent with Eq.~14!. Next, according to Eqs.
~12! or ~14!, the ratio of the strains required to induce a
change in phase,Dw, with gratings having different uncom-
pressed depths of surface relief,d0 , should be equal to the
ratio of the depthsd0 . Figure 10 shows that, in agreement
with this prediction, the ratio of strains that causeDw;p is
1.560.1, while the ratio of undeformed surface relief depths
is 1.560.1. Finally, as Fig. 13 illustrates, the diffraction
properties scale with the compressive stress, rather than the
compressive force, an intuitive result consistent with a linear
relation between the stress and the strain.

The optical analysis included predictions for the behav-
ior of the device when operated in each of the modes illus-

trated in Fig. 7. As Fig. 16 shows, when the data are scaled
appropriately@optical analysis section, Fig. 11, and Eq.~3!#,
measurements made in different configurations yield the
same results.

The theory section showed that the response time of the
grating depends on the Young’s modulus, the density, and
the thickness of the grating, and is less than 1 ms for gratings
made from PDMS with thicknesses less than 1 cm. Measure-
ments illustrated in Fig. 15 indicate a response time that is
longer than the predicted value by about a factor of 10. We
believe that the discrepancy arises partly from the elasto-
meric nature of the tubing and other components that connect

FIG. 15. ~a! Intensity of the zeroth order beam generated from passage of
514 nm light through an elastomeric grating as a function of applied pres-
sure. The results provide a calibration relating the intensity to the pressure.
~b! Intensity of the zeroth order beam generated from passage of 514 nm
light through an elastomeric grating as a function of time during an increase
in pressure and during its release. The fall time is on the order of millisec-
onds.

FIG. 16. ~A! Fourth power of the intensity of the zeroth order beam gener-
ated from transmission of 514 nm light through a 4.9-mm-thick elastomeric
grating with 1.2-mm-deep surface relief, and the intensity of the zeroth order
beam generated from quadruple passed 514 nm light through a 4.9-mm-
thick elastomeric grating with 1.2-mm-deep surface relief as functions of the
displacement of the rigid plates used to perform the compression. Figure 16
illustrates that the intensity of the zeroth order beam scales as expected from
Eq. ~3!. ~B! Intensity of the zeroth order beam generated from transmission
of 514 nm light through a 4.9-mm-thick elastomeric grating with 1.2-mm-
deep surface relief as a function of one half of the displacement of the rigid
plates used to perform the compression, and the square root of the intensity
of the zeroth order beam generated in the double passed configuration with
514 nm light and a 4.9-mm-thick elastomeric grating with 1.2-mm-deep
surface relief as a function of one-half of the displacement of the rigid plates
used to perform the compression, and the intensity of the zeroth order beam
generated in the reflection configuration with 514 nm light and a 4.9-mm-
thick elastomeric grating with 1.2-mm-deep surface relief as a function of
the displacement of the rigid plates used to perform the compression. Figure
16 illustrates that the intensity of the zeroth order beam scales as expected
from results from Sec. III D 1.
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the pressure sensor to the high-pressure nitrogen tank.
Finally, we note that, although the theory accurately de-

scribes the behavior of the device, there are limitations and
some of these were described. For many applications, an
empirical characterization, rather than a detailed theory, will
be sufficient.
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