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This article describes the fabrication and operating principles of a device suitable for measuring
displacements, stresses, strains, accelerations, and forces. The device consists of an elastomeric
material with a surface relief diffraction grating embossed on its surface. Mechanical compression

of this element changes the way that it diffracts light. This article also describes designs and
performance characteristics of simple accelerometers and pressure sensors based on these devices.
© 1996 American Institute of Physids50034-67486)05109-X

I. INTRODUCTION Il. THEORY
. . . . . A. Qualitative description of the elastomeric binar
This article describes a new kind of device—an elasto-pha?Se grating P y

meric element having a relief grating embossed on its s based | ic bi h .
surface—for measuring displacements, strains, stresses, ensors based on elastomeric binary phase gratings op-

forces, and accelerations. In this device, mechanical com(?rate by simple principles. The gratings have relief structure

. . . . . on their surface that diffracts light passing through or reflect-
pression controls the relative optical path of light passmging from them. The period of the grating determines the

through it. As a result, the optical phase and therefore theeparation of the diffracted orders, and the depth of the sur-
pattern of diffraction are coupled to the compression. Thigace relief determines their relative intensities. Compressing
report describes the fabrication and operation of the devicghe grating in the out-of-plane direction reduces the depth of
and illustrates its application in a simple accelerometer and ¢éhe surface relief and changes the intensity of each of the
pressure sensor. diffracted orders. Figure 1 shows one possible means for
There are many techniques for measuring displacementgchieving the compression, the mechanical response of the
strains, stresses, and accelerations. Optical interferometrgrating to this compression, and one possible configuration
one of the most common methods for determining displacetor generating diffracted light. The change in intensity of the

ments, has sensitivity in the nanometer rahgather meth-  diffracted orders induced by compression is lafgd.7 dB),

ods with sensitivities in the micron and submicron rangeand can be related quantitatively to the degree of compres-

. . : sion. The relationship between the change in intensity of the
include measurements of changes in capacitaacd phase- . ] T

" . . : diffracted orders and the mechanical compression is the fo-
sensitive detection of the reflection of ultrasonic waves.

. . 7" cus of the next three sections.
Stresses and strains can be determined by changes in the

birefringence of strongly photoelastic samples caused by

deformation? Surface strains can be determined by measur- )

ing the change in wavelength of a diffraction grating at—B' Optical response

tached to the sampReCharacteristics such as ease of use and  To provide a semiquantitative understanding of the opti-
fabrication, low cost, and insensitivity to optical alignment cal behavior of the binary elastomeric phase grating, we de-

make the elastomeric phase gratings described in this articke!op & simple model to compute the diffraction pattern as a
an attractive alternative to these other methods. function of the index of refraction of the elastomer and the

This article is organized into five part§) We begin in surroundings, and of the depth of the surface relief. Figure 2

the theory section with a brief, qualitative description of hc)Wlllustrates the coordinate system. We assume that the optical

light diffracts from the gratings before and during compres-!c'e!d.haS infinite exten'F alopg andy, ar]d that. there are an
infinite number of grating lines extending infinitely and ori-

sion. (i) We present a simple analytical model that describe%med along thg axis. In this case, the optical field just after

the optical properties of the elastomeric binary phase graty,q grating £=0") is related to the optical field just before
ings as they are compressed. Finite element modeling idefpe grating ¢=07) by

tifies the limitations of this modeliii) We describe the fab-
rication of the gratings and present results obtained from E(x,z=0")=E(z=0")7(x) 1)
gratings in different optical configuration@v) In the experi-

mental section, we describe the design and performance Qfhere 7(x) is the transmission function of the grating. The
an accelerometer and a pressure sensor that are based gRunnofer diffraction patterB(x’,z') is given by the Fou-
compression of an elastomeric binary phase gratmpFi-  rier transformation of the transmission functiaifx), evalu-
nally, in the results and discussion section, we compare thated at the spatial frequency/\z’, where\ is the wave-
experimental results to computations. length of the light’
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FIG. 1. An elastomeric element with a surface relief grating is compressed between two optically transparent rigid plates. Pressure applied to the plates
compresses the grating, thereby decreasing the relief of the grating. This change in relief alters, in a well-defined manner, the way that light diffracts from the
grating. Finite-element modeling illustrates how the structure of the surface relief changes with the strain.

For present purposes, we assume that the transmissigalief of the grating is in contact with a reflective surface,
function is binary and remains so during compression. For and the diffraction pattern is monitored in reflection, then Eq.
grating with equal linewidths and spaces, (2) must be modified by replacing with 2¢. Figure 3

shows calculated diffraction patterns fgr=0, w/4, /2,

. (2)  3ml4, andm.

1 otherwise The configuration for diffracting light from a grating de-
whereg is the depth of modulation of the phase, anis the ~ termines how rapidly the diffraction pattern changes as the
width and spacing of the lines of the grating. The magnitudedepth of surface relief changes. By using the reflection con-
of ¢ depends on the initial depth of the surface relief, thefiguration described above, or by passing light through the
index of refraction of the elastomer and the surroundiags  grating multiple times, the sensitivity of the diffraction pat-
in this casg and on the degree of compression. If the surfacdern to changes in relief can be increased relative to that

e 2nL<x<(2n+1)L nel
7(X) =
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C. Mechanical response and coupling to the optical
rigid plate whose response

position is fixed
This section models the response of the optical phase
[Eq. (2)], to compression. The model describes how the op-
tical phase depends on the geometry of the grating and how
rigid the grating moves during compression. Accurate determina-
plate tion of the material displacements and the phase requires a
treatment of the mechanics that explicitly includes the sur-
face relief structure. Although such a treatment is beyond the
scope of a simple analytical description, a semiquantitative
understanding can be obtained by examining displacements
L in a body without a surface relief grating, and by assuming
that the binary shape of the surface of the uncompressed
grating remains unchanged during the compression. Finite
element calculations described in the next section illustrate
the exact(linearn behavior of the elastomeric grating upon
compression.
Figure 2 defines the coordinate system. For linear elastic
materials, a uniform axial stres¥,,=F/A, whereF is the
FIG. 2. Definition of axes and geometrical quantities for optical and me-force perpendicular to the surface of the plates used for com-

moveable rigid
plate

elastomer

force=F —— >

area=A

chanical calculations. pression and\ is the area of the elastomeric elemepto-
duces a uniform axial strairef,) given by
achieved by passing light through the grating once. In par- T,=—Ee,,, 4
ticular, aftern passes through the grating, the intensity of the
zeroth order beam is given by whereE is the Young’s modulusT,, also causes expansions
() on in thex andy directions. These expansions are related to the
lo"<RY, ©) magnitude of the compression alongnd the Poisson’s ratio

whereR represents the efficiency of diffraction into the ze- (o) by
roth order for a single pass. Figure 4 illustrates the intensity . — €yy=— 06 (5)

of the zeroth order diffracted beam as a function of the depth i _ ]
of modulation of the optical phase for one, two, and fourEquations(4) and (5) determine displacements throughout

passes through a binary grating. Figure 4 also illustrates th@'e material. These displacements are given by

response expected for operation in the reflection configura- oT,,
tion. Ux(X,y,2)=—— X, (6)
oT,,
Uy(xyyl): ? ya (7)
TZZ
Phase Shift =0 Uy,(X,y,2)=— E Z. (8
The change in the depth of the modulation of the optical
—_ phaseA¢ can be defined as
= /A
g Ap=¢o— @1, 9
! where ¢, is the depth of modulation of the phase associated
= T2 A with the uncompressed grating aggdis that associated with
=z the compressed grating. These phases are related to the un-
& dd,) and compressedd() depths of surface re-
5 compresse do) p p
E e o | lief by
2 T
}k A A‘P:T(ne_na)dO_T(ne_na)dl
T
2
Deflection Angle (arb. units) N (Ne=Na)(do—dy), (10

FIG. 3. Diffraction pattern generated by passage of light through a binaryWhere Ne and N, are the indices of refraction for the elas-

phase grating as the depth of modulation of the phase is varied fromr0 to tpmer and the air, respectively, andis the wavelength of
radians in increments of/4. light.
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FIG. 4. Calculations of the intensity of the zeroth order diffracted beam generated by passage through or reflection from a binary grating. The rate of change
of the zeroth order intensity increases as the number of passages of light through the grating increases. Reflection from the grating effectively increases the
depth of modulation of the phase by a factor of 2.

For small compressions, we expect that the change in the 1 [E\Y2
depth of the surface relietlg—d,) is approximately linearly Y= 7h ( ) (16)
related to the displacement of an element with a flat surface
at a depth equal to the depth of the uncompressed relief

P
For typical elastomeric materidls(E~2—3 MPa and
d;—dpxu,(z=dp). (11 p~1500 kg/m) this frequency is in the kHz range for grat-

With this relation ings with thicknesses<1 cm, and in the MHz range for
thicknesses<10 um.

-T —Fd
Azpocuz(z=d0)=Tzde= AEO 12
Using the relationship between the stress and strain, and tife Finite-element modeling: Inadequacies of the
definitions of these quantities simple model
= Ah The simple mechanical and optical model described
T,~~=—Ee,~=—E — (13 above neglects much of what happens when the grating is
A h - .
compressed. Finite-element calculations show how the grat-
and Eq.(12) can be rewritten as ing actually deforms(The calculations were performed in
—doAh the plane-strain approximation. We assumed that the grating
A H =—doe,,, (14  element sticks well to the plates used for compression, so

that lateral displacements at the top and bottom of the ele-
whereAh is the distance of compression, alnds the unde- ment were zero. Stress-free boundary conditions were used
formed thickness of the elastomer. at the sides of the element, and the load was applied perpen-
dicular to the surfaces. All calculations were performed in
the linear regime, with a Poisson’s ratio of 0 4bigure 5
illustrates the deformed finite element meshes at four differ-
The resonance frequency for out-of-plane compressiongnt strains typical of those examined experimentally. Figure
determines the response time of the grating. The relevarg shows that the grating does not maintain a binary shape

D. Response time

equation of motior(neglecting dampingis during the compression. Deviations arising from bending of
2u. E é%u the relief pillars will be most pronounced for gratings with
TZZ = ; #. (15 depths of surface relief that are considerably larger than the

period of the grating. Deviations arising from *“sagging” of
Solutions to this equation show that, for a grating element ofhe recessed regions will be most pronounced for gratings
thicknessh and densityp, the resonant frequency for the with depths of surface relief that are considerably smaller
out-of-plane breathing mode of motion is than the period of the grating. As we will show in the results
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FIG. 6. Zeroth order diffraction efficiencies for green light diffracted from
uncompressed elastomeric binary phase gratings as a function of the spin
speed and thickness of the photoresist from which the grating was cast. The
data include gratings cast from two different formulations of photoresist:
Shipley 1818 and 1822.
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FIG. 5. Finite-element calculations of the deformation of an elastomericthese gratings diffract light out of the zeroth order beam. As

binary phase grating caused by compression. The distorted finite-elemefhe spin speed for applying the photoresist changes, the

mesh is illustrated at strains of 1%, 2%, 5%, 10%, and 15%. These simUlgga iy of surface relief and the diffraction properties of the

tions indicate that compressions induce deviations from a square wave ' | ) L .

shape. gratings change. As Fig. 6 indicates, changes in the depth of
surface relief by fractions of a micron induce large changes
in the intensity of the zeroth order diffracted beam. This

d di . tion. for th i ined h thsensitivity to the depth of surface relief provides the basis for
and discussion section, for the gratings examined Nere, e yq, 06 that is sensitive to dimensional changes caused by
simple analytical model accounts for most of the importan

: - tcompression or other mechanisms.
optical characteristics.

. EXPERIMENT C. Optical response during mechanical compression

To determine how the optical response of the elasto-

In this section, we describe the fabrication of elastomeric . S . .
binary phase gratings. We also demonstrate their optical rdneric grating is related to mechanical compression and to the

sponse and how this response changes during compressi(?Wnens'onS of the grating, we performed measurements with

Finally, we describe the design and operation of two device@raﬁngs having different geometries. Figure 7 illustrates the
an accelerometer and a pressure sensor different configurations for the measurements, and intro-

duces terminology that is used throughout the remainder of
o o _ this article. We note that compression of all of the gratings
A. Fabrication of elastomeric binary phase gratings was reversible and reproducible during the several hundred

Binary elastomeric phase gratings were fabricated byycles of compression investigated in this study.
casting poly-dimethysiloxane(PDMS) over photolitho- 1 The effect of physical properties on the optical
graphically patterned photoresist on silicon. Once cured, theesponse
PDMS was removed from the photoresist, leaving a relief
structure W'.th the geometry of_the patterned ph(_)tor_e5|st €Mion reversibly by mechanically compressing an elastomeric
bossed on its surface. The spin speed for application of thehase grating, a 3.0-mm-thick grating with Juth deep re-
photoresist, and the photolithography determined the dimerﬁef on its surféce \;vas compressed in the out-of-plane direc-
sions of the pattern. For the binary gratings studied here, th

thickness of the photoresist was between 1 andn® and fon by moun_tmg the grating betvyeen Microscope slides at-
tached to mirror mounts on calibrated translation stages.

the pattern consisted of two micron lines separated by two, _. h o fi . he efficiencies for dif
microns. The thickness of the PDMS was between 0.5 and ?smg the transmission configuration, the e clencies for dit-
: ' raction of red(He—N@ and greer(Ar™) laser light into the

mm. zeroth and first orders were measured with a photodiode as a
function of displacemen(fFig. 8). Approximately 15% strain
switched the grating from efficient transmission to strong
A series of binary phase gratings with different depths ofdiffraction. As the data show, for strains of this magnitude,
surface relief were produced following the procedure dethe compression is elastic, and therefore reversiblbe
scribed in the preceding section. Figure 6 illustrates howsolid lines in Fig. 8 indicate computations using the simple

To illustrate the ability to change the pattern of diffrac-

B. Optical properties of the uncompressed gratings

3314 Rev. Sci. Instrum., Vol. 67, No. 9, September 1996 Binary phase gratings
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FIG. 7. Schematic illustrations of the different configurations used for mea- 0 0.07 0.14 0.21 0.28

suring the optical response of the elastomeric gratings. The terminology (b) Compressive Strain

introduced in this figure is used throughout the article.
FIG. 9. Intensity of the zeroth order beam generated from passage of 514
nm light through 1.2- and 5.2-mm-thick elastomeric gratings with An8-
deep surface relig) as a function of displacement afig) as a function of
strain of the rigid plates used to perform the compression. These results
indicate that the change of the intensity of the zeroth order beam depends on

- - the strain.
514 nm Light 632 nm Light

model described in the theory section. The results and dis-
cussion section describes these computations in detail.

To investigate how the response of the grating changes
with the overall thickness of the elastomer, 5.2- and 1.2-mm-
thick gratings with 1.8um deep surface relief were com-
pressed and the intensity of the zeroth order beam was re-
corded in the transmission configuration as a function of the
compressive displaceme(fig. 9). Qualitatively, these data
indicate that the response of the grating is a function of the
strain. They also indicate that for a given surface relief struc-
ture, the sensitivity to displacement increases as the overall

I thickness of the grating decreases.
013 02 To characterize how the response of the grating changes

0.9 A

Oth Order
=
il

e
W
1

Diffraction Efficiency

1st Order

0 =
-0.033 0 0.067

Compressive Strain Compressive Strain with the uncompressed depth of surface re"ef, 5.2- and 4.9-
o - _ _ _ mme-thick gratings with 1.8 and 1.2m-deep relief structure,
FIG. 8. Diffraction efficiencies measurédl during compressing? during respectively, were compressed and the intensities of the ze-

0.13 0 0.067

releasing and calculatedsolid lines for a binary elastomeric phase grating . .
as a function of compressive straii and B are, respectively, diffraction  I0th order beams were recorded as a function of displace-

efficiencies of the zeroth and first order beams using 514 nm laser (@ht. ment. Measurements were made using the transmission con-
and D are, respectively, efficiencies for diffraction into the zeroth and firstﬁ uration (Fig. 10. These data show that for a given
order beams using 632 nm laser light. Data represented by squares angd. L . . .
circles were collected during two cycles of compression and release, resper:-ﬁq'CkneSS' the sensitivity to displacements and to strains in-

tively. creases as the depth of the surface relief structure increases.
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T 11% Strain FIG. 11. (A) Intensity of the zeroth order beam generated in the transmis-

b) 7 3% Strain sion, reflection and double passed configurations with 514 nm light and a

4.9-mm-thick elastomeric grating with 12n-deep surface relief as a func-

) tion of the displacement of the rigid plates used to perform the compression.
FIG. 10. Intensity of the zeroth order beam generated from passage of 5148) |ntensity of the zeroth order beam generated in the transmission and
nm light through 4.9- and 5.2-mm-thick elastomeric gratings with 1.2- andquadruple passed configurations with 514 nm light and a 4.9-mm-thick elas-
1.8um-deep surface relief, respectivel) as a function of displacement  tomeric grating with 1.24m-deep surface relief as a function of the dis-
and(b) as a function of strain of the rigid plates used to perform the com-pjacement of the rigid plates used to perform the compression.

pression. These results indicate that the sensitivity of the intensity of the

zeroth order beam to displacement and strain depends on the initial depth of

surface relief. higher in the quadruple passed configuration than it is in the

transmission configuration.

2. The effect of the configuration of the optical probe

D. Examples of devices based on elastomeric binary
on the response

phase gratings

To understand how the optical arrangement changes the A simple accelerometer
response of the grating, a 4.9-mm-thick grating with A 14 jjjystrate one application of the elastomeric grating,
relief was compressed between transparent and reflectige constructed a simple device to measure accelerations. In
plates and the intensity of the zeroth order beam was megpis accelerometer, a mass mounted on a freely moving pis-
sured as a function of displacement. These measuremens, js connected to a reflective rigid plate that is attached to
were made once with the relief structure in contact with thegpe side of the grating. The other side of the grating is at-
reflective plate and once with the relief structure in contackached to a transparent rigid supp@Ftg. 12. An accelera-
with the transparent plaf€ig. 11(A)]. The data indicate that tion of this device along the direction that the piston can
the sensitivity to displacements is higher in the reflection oimove compresses the grating and changes the intensity of the
the double passed configurations than in the transmissiogeroth order diffracted beam. This change in intensity can be
configuration. related to the magnitude of the acceleration. Since we did not

In a second experiment, a 4.9-mm-thick grating with 1.2have a simple means to subject the device to controlled ac-
pm relief was compressed and the intensity of the zerotlgelerations, we mounted the accelerometer in a vertical con-
order beam generated from four passes through the gratirfiguration and varied the mass. Figure 13 shows the results of
was measured as a function of displacemldtig. 11(B)]. these measurements. These data indicate that the response is
The data indicate that the sensitivity to displacements isensitive to the magsccelerationand scales with the com-

3316 Rev. Sci. Instrum., Vol. 67, No. 9, September 1996 Binary phase gratings
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FIG. 12. Schematic illustration of an accelerometer based on an elastomeric Flow cell walls
binary phase grating. Upon acceleration, the mass compresses the grating
and changes the way that light is diffracted. This change is related to the
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Glass / \\

slide

FIG. 14. Schematic illustration of a pressure sensor based on an elastomeric

binary phase grating. Fluid pressure from the inside of the flow cell com-
;f o o presses the thin grating against a glass slide.
=
=
5 o)
§ o pressive stress. As a result, the lateral dimensions of the elas-
§ °o o tomeric grating and the mass can be varied to adjust the
A o o range of sensitivity to accelerations.
_aé [m]
S .
£ o 2. A simple pressure sensor
B 1 o 00 We also fabricated a device sensitive to pressure
é’ © 5x7 mm °oo0 changes. A thi(~0.5 mm) grating covering an openin
g 0 8x10 mm mm in diameter in a flow cell formed the basis of the de-
0 ; : : vice. The surface relief of the grating was oriented away
0 50 g0 40 600 from th ing in the fl I, and held tightl
(@) Mass (g) rom the opening in the flow cell, and was held tightly
against a glass slide. Pressure inside the cell compressed the
= grating against the glass slide, and changed the pattern of
§ "8 diffraction. Figure 14 schematically illustrates the device. To
s | =2 characterize the device, the flow cell was connected to the
3 © , regulator of a high-pressure nitrogen tank. We measured the
g [} 15.2 psi . R . .
g o 110 a/mm intensity of the zeroth order diffracted beam as a function of
ol © cemm applied nitrogen pressuf€ig. 15a)]. Pressurizing the flow
8 O'IOIS N/mm cell with water produced similar results. Figure(ipillus-
£ o ! trates the transient response.
‘46 4 |
> % | o ©
2 o 5x7 mm 0|0 IV. RESULTS AND DISCUSSION
§ 8x10 mm :
EO ki ! This section shows that the simple mechanical and opti-
0 003 006 009 012 015 cal analysis introduced in the theory section accounts for
(b) Compressive Stress (N/mmz) many features of the data. First, consider the data illustrated

in Fig. 8. Results from the theory sectifigs.(2) and(14)]
FIG. 13. Intensity of the zeroth order beam generated from passage of 51determine efficiencies for diffraction into the various orders
nm light through 4.9-mm-thick elastomeric gratings with lua-deep sur-  as a function of the strain, given the constant of proportion-

face relief with lateral dimensionsX&7 and 8<10 mm(a) as a function of : : f e .
the mass used to compress the grating @ds a function of compressive a“ty between strain and optlcal phase. By flttlng the depen

stress generated by the mass. These results indicate that the change in zetd;ﬁﬁnce of the inte”SitY_ of the _514 nm first O_rder dif_fraCted
order beam intensity depends on the stress. light on the compressive strain to computations using Egs.
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FIG. 16. (A) Fourth power of the intensity of the zeroth order beam gener-
?\ted from transmission of 514 nm light through a 4.9-mm-thick elastomeric

FIG. 15. (a) Intensity of the zeroth order beam generated from passage of . . : . .
14 Igg)ht throug)P/\ an elastomerio grating asga function of apF;)Iied gres_gratmg with 1.2um-deep surface relief, and the intensity of the zeroth order
beam generated from quadruple passed 514 nm light through a 4.9-mm-

sure. The results provide a calibration relating the intensity to the Pressure. . . clastomeric grating with 1.am-deep surface relief as functions of the

(b) Intensity of the zeroth order beam generated from passage of 514 n isplacement of the rigid plates used to perform the compression. Figure 16

!'ght through an elas_tomenc grating as a fun(_:tlon‘ of time during an INCreasqustrates that the intensity of the zeroth order beam scales as expected from
in pressure and during its release. The fall time is on the order of m||||sec-Eq (3). (B) Intensity of the zeroth order beam generated from transmission
onds. oy

of 514 nm light through a 4.9-mm-thick elastomeric grating with ir8-
deep surface relief as a function of one half of the displacement of the rigid
(1), (2), and(14), we determined this constant of proportion- plates used to perform the compression, and the square root of the intensity
ality. With this constant, we computed the intensities of theOf the zeroth order beam generated in the double passed configuration with
. ’ . 514 nm light and a 4.9-mm-thick elastomeric grating with ArR-deep
other diffracted ordersfor both 514 and 633 nm Ilghtas 8 surface relief as a function of one-half of the displacement of the rigid plates
function of strain. The solid lines in Fig. 8 illustrate the used to perform the compression, and the intensity of the zeroth order beam
results. The calculations show good agreement with the datgenerated in the reflection configuration with 514 nm light and a 4.9-mm-

Other measurements also show agreement with th%iCk elastomeric grating with 1.2m-deep surface relief as a function of
the displacement of the rigid plates used to perform the compression. Figure

simple mEChanical_ and optical model. F_Or exa_mple_, Fig. 96 illustrates that the intensity of the zeroth order beam scales as expected
shows that diffraction patterns from gratings with different from results from Sec. 111 D 1.

thicknesses have the same dependence on the strain. This
result is consistent with Eq14). Next, according to Egs.
(12 or (14), the ratio of the strains required to induce atrated in Fig. 7. As Fig. 16 shows, when the data are scaled
change in phase\¢, with gratings having different uncom- appropriately[optical analysis section, Fig. 11, and Eg)],
pressed depths of surface relief,, should be equal to the measurements made in different configurations yield the
ratio of the depthsl,. Figure 10 shows that, in agreement same results.
with this prediction, the ratio of strains that cause—~ is The theory section showed that the response time of the
1.5+0.1, while the ratio of undeformed surface relief depthsgrating depends on the Young’'s modulus, the density, and
is 1.5+0.1. Finally, as Fig. 13 illustrates, the diffraction the thickness of the grating, and is less than 1 ms for gratings
properties scale with the compressive stress, rather than tmeade from PDMS with thicknesses less than 1 cm. Measure-
compressive force, an intuitive result consistent with a lineaments illustrated in Fig. 15 indicate a response time that is
relation between the stress and the strain. longer than the predicted value by about a factor of 10. We
The optical analysis included predictions for the behav-believe that the discrepancy arises partly from the elasto-
ior of the device when operated in each of the modes illusmeric nature of the tubing and other components that connect
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