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Through a simple analytical description we quantify how
pressure-driven flows over grooved surfaces develop
transverse components, which, for shallow grooves, can
be modeled with simple anisotropic effective boundary
conditions. Helical recirculation results in channels or
capillaries with grooved walls. An experimental validation
of our model is presented. Our analysis provides a
workable guide for the design of 3D flows with simple
patterns of grooved regions, e.g., to control the position
of streams in the cross section of a channel or to promote
mixing. Potential applications in microfluidics are out-
lined.

Currently, there is broad interest in methods for controlling
the behavior of fluids in microsystems for potential use in small
(hand-held), integrated devices for performing analytical and
synthetic chemical tasks (see, for example, refs 1-3). Fluid
handling for chemical applications typically requires elements such
as pumps and valves2,4 and also the ability to manipulate the
position of streams within flows, e.g., for mixing5 or for the
spatially resolved delivery of reagents.6 In microfluidic systems,
it is a challenge to create the three-dimensional flows that are
required for manipulating streams, because the Reynolds numbers
are typically small (e1) and the channel geometries are typically
long and narrow with pressure and electric fields applied from
the ends. Another important practical constraint in designing
microfluidic systems is that the common lithographic methods
used in fabrication lead to planar, layered structures; complex
three-dimensional structures are difficult to fabricate.7 So in most
microsystems, the flow structure follows locally a simple pattern,
that is Poiseuille-like for pressure-driven flows, pluglike for
electroosmotic flows (EOF), or a combination of both if recircula-
tion constraints require it. Although some proposals exist for

generating more complex EO flows locally using heterogeneously
charged surfaces,8-10 pressure-driven flows have been largely
limited to parabolic-like profiles.

In this paper, we propose a simple but general scheme to
enlarge the forms of flow accessible with simple steady pressure
gradients, taking advantage of the surface control allowed by
microfabrication technology. Namely, we propose to create linear
grooves on (at least) one of the surfaces of the channel, to make
the surface locally anisotropic. This local anisotropy affects the
overall geometry of the flow in a way that we analyze. Pressure-
driven flows in these channels contain recirculating components
that are transverse to the principle direction of flow. This
recirculation can be used to mix adjacent streams, control the
dispersion of plugs,5 and position streams within the cross section
of the channel. The simple model that we present in this paper
should give experimentalists an accessible handle on the design
of microfluidic components for such purposes.

To demonstrate the mechanism and provide estimates of the
effects attainable, we focus here on the simplest pattern of a
periodic set of parallel linear grooves. We consider first a slab
geometry where the bottom wall has a sinusoidal profile of weak
amplitude relative to the depth of the channel (Figure 1). In the
section Flow over a Sinusoidally Modulated Surface we compute
using a perturbation approach the pressure-driven flow in this
geometry. This allows us to describe qualitatively and to estimate
quantitatively the components of the flow generated transverse
to an applied pressure gradient. Using this simple guide for
describing the flows generated, we address in the section Flow
Pattern in a Closed Channel the simple case of a channel of
rectangular section with a floor bearing parallel grooves at an angle
with respect to the channel axis and characterize the helical flow
obtained. A first experimental check using microfabricated chan-
nels is reported in the section Experimental Check in Microfab-
ricated PDMS Channels. We then conclude by discussing the
extension to more complex patterns and applications, in micro-
fluidics and in other domains.

Shear flows over grooved surfaces have been studied by a
number of authors, many of whom were concerned with the role
of the wall roughness on the effective boundary condition (slip
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or no-slip).11-13 In these papers, grooves were taken as a simple
representation of roughness (a 2D simplification of bumps), and
only flow perpendicular to the grooves were analyzed. Here, we
consider actual grooves, easily produced by microfabrication, and
show that the effective boundary condition is tensorial and
anisotropic. These anisotropic boundary conditions can then be
used to understand the structure of the flow over grooves that
are obliquely oriented with respect to the principle direction of
flow. In particular, we present a simple formula for the magnitude
of the net transverse component of the effective slip and for the
structure of the recirculation that is generated in the fluid above
a region of obliquely oriented grooves. These rules can be used
to design complicated 3D flows for microfluidic applications.

FLOW OVER A SINUSOIDALLY MODULATED
SURFACE

In this section, we calculate the pressure-driven flow between
two parallel slabs, when one of them has a sinusoidal shape of
small amplitude relative to the gap between the slabs. This is very
similar to the work of Hocking12 but for the fact that we insist on
the surface being anisotropic (the grooves are not bumps, but
extendshere indefinitelysin the y1 direction) and look for the
consequences of this anisotropy.

For the sake of clarity, let us immediately specify our notation.
We take the two planes to be perpendicular to the z axis and on
average parallel to the (x1, y1) plane. More precisely, the location
of the bottom modulated boundary is described by z- ) RH
cos(qx1) while the top flat one is located at z+ ) H. The wave
vector of the sinusoidal modulation of the shape of the bottom
plate is q ) qx1, while RH is its amplitude, with R a small
nondimensional number.

We now solve the problem corresponding to steady low-
Reynolds number hydrodynamics for an incompressible fluid of
viscosity η (Stokes equation):

where v and p are the velocity and pressure fields, with no-slip
boundary conditions on the top and bottom plates.

Here we focus more precisely on the flow generated by an
applied pressure gradient in the (x1, y1) plane. If R is zero, the
flow has the simple Poiseuille form:

For nonzero but small values of R, it is possible to obtain a
solution by a perturbative expansion in powers of R. The simplest
procedure owing to the linearity of the problem is to consider
separately situations where the flow is parallel to x1 (and thus
parallel to the modulation wave vector) and situations where flow
is along y1 (and thus perpendicular to q).

Note that formally our calculation allows us to explore both
the regime of distant plates qH . 1, where we expect the
perturbation due to the grooves to generate effects localized to
the vicinity of the surface, and the “lubrication” regime qH , 1,
where the channel appears as a locally flat channel, with a height
that changes slowly along x1.

A. Flow along x1. For pressure gradients and flow along x1,
the pressure gradient varies periodically along the direction x1,
and the flow has components along x1 and z. Solving eqs 1 and 2
with the no-slip boundary condition on z- to second order in R,
we obtain

where 〈dp/dx1〉 is the position-independent pressure gradient
averaged over a period along x1 and where T|(x1, z) are O(R) and
O(R2) terms periodic in x1, of zero average, that correspond to
structures (rolls) localized in the vicinity of the bottom plate in
the case H . q-1 (see the Appendix for complete formulas).

Note that the z component of the flow is nonzero only in these
rolls, where it can be obtained from the conservation equation
∂vx1/∂x1 + ∂vz/∂z ) 0 and the equation for T| given in the Appendix.
Elsewhere the flow is laminar v ) vx1(z)x1, with vx1 given by eq 4.

The function K|(qH) is given by

so that in the lubrication limit qH , 1, K|(qH) = 3, and in the
limit of plates very distant from one another H . q-1, K|(qH f

∞) = 2qH.
Another useful quantity is the total fluid flux between the two

plates (per unit length in the y1 direction), Jx1 ) ∫z-
z+

vx1 dz, which
is a conserved quantity, and thus independent of x1:

Note that the periodic terms of eq 4 contribute as the boundary
location z- itself is also modulated. The addition of grooves
increases the global resistance to flow by a term of order R2 (from
the symmetry of the problem, the sign of R should not affect this
average resistance, consistent with an even power in R).

Effective Boundary Conditions. With these equations in
hand, let us pause to extract their physical message. We present
two equivalent ways of accounting for the effect of the modulation

(11) Richardson, S. J. Fluid Mech. 1973, 59, 707-719.
(12) Hocking, L. M. J. Fluid Mech. 1976, 76, 801-817.
(13) Miksis, M. J.; Davis, S. H. J. Fluid Mech. 1994, 273, 125-139.

Figure 1. Geometry for the theoretical analysis presented.
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of the surface shape by modified effective boundary conditions
for the hydrodynamic problem. These are most meaningful when
the gap H is much larger than the other lengths in the problem
and in particular qH . 1.

The first perspective (see Figure 2) comes directly from eq 4,
which indicates that the net (averaged over a period) result of
the modulation of the bottom floor is an additional simple shear
flow against the principle flow, which corresponds to an effective
slip velocity vslip| on the reference z ) 0 plane of amplitude

In the limit of very distant plates H f ∞, this quantity should
depend only on local quantities, i.e., not explicitely on H. In this
limit, the local shear rate just above the (flat) bottom plate is γ̆ )
-H/2η〈dp/dx1〉, and K| ) 2qH, so that vslip| ) -qγ̆(RH)2. vslip| is
indeed only linked to local quantities: the local shear rate γ̆. the
amplitude RH, and the wave vector q of the undulations. In this
limit, the correction to the total flux Jx1 reads (H/2)vslip|, as it should
given the no-slip boundary condition on the top plate (see eq 6).

In a second picture (see Figure 3), neglecting the periodic
terms of zero average, eq 4 can be rewritten as a simple Poiseuille
flow:

which corresponds to a flat bottom no-slip surface located at

This kind of boundary condition is often referred to as the
“extrapolation length” or “slip length” in the literature describing
slip phenomena over surfaces, i.e., the location at which the flow
profile extrapolates to a no-slip boundary condition (usually -zeff

is what is called the extrapolation length). The positive value of
zeff| (i.e., negative slip) again demonstrates that on average the
grooves increase the friction due to the surface. In the qH f ∞
limit, zeff| is appropriately a local geometrical quantity independent
of H: zeff| ) q(RH)2. One can check that in this limit the flux obeys
the corresponding Poiseuille (Hele-Shaw) formula Jx1 ) -((H -
zeff|)3/12η)〈dp/dx1〉.

Although it carries exactly the same physics as the slip velocity
picture, this “extrapolation length” description is a more intrinsic
geometrical one, independent of the applied forces. In the qH .
1 relevant limit, the two are simply (and logically) connected by
vslip| ) -γ̆zeff|. The two pictures are usually captured by a so-called
mixed boundary condition:

Note that both pictures cannot be used so simply in the qH f

0 limit (narrow channels), as the effective terms appearing in the
velocity field eq 4 and in the net flux eq 6 are then different.

Also note that, in the case of short-wavelength grooves, so that
although R , 1 one still has RqH . 1 (grooves deeper than wide),
it is clear from eq 4 that the expansion for the flow breaks down
in the vicinity of the bottom surface (i.e., for z of order R) as the
leading term scales as R while the correction is of order R2qH
and thus larger! Other evidence of this breakdown is that eq 9
then predicts a value of zeff that is larger than the groove height
RH. In this situation of deep narrow grooves, the flow penetrates
inside the grooves only on a distance ∼1/q due to the Laplacian
nature of the equations, the driving shear being screened before
it reaches the bottom. One then expects that the proper effective
boundary condition is of the form zeff = RH - c/q, where c is a
geometrical constant of order 1 (this is actually consistent with
calculations in ref 12, which suggest c = 0.56).

B. Flow along y1. For pressure gradients and flow along y1,
the pressure gradient is constant, and the flow is uniaxial along
y1 and varies periodically along the direction x1. The flow (again
to second order in R) has a structure formally similar to the one
of eq 4:

where T⊥(x1, z) again corresponds to terms periodic in x1, of zero
average, localized in the vicinity of the bottom plate in the case H
. q-1 (formulas for these terms are given in the Appendix). Note
that in this geometry there is strictly no componenet of the flow
along z, the flow being laminar and along y1 uniquely.

The function K⊥(qH) is given by

so that in the lubrication limit qH , 1, K⊥(qH) = (qH)2/3, while

Figure 2. Effective slip velocity: the Poiseuille flow for a flat channel
(left) modified due to the grooves on the bottom plate by a correction
that takes the form of a simple shear flow (shown schematically, not
to scale), plus periodic recirculation structures localized in the vicinity
of the bottom plate (not shown).

Figure 3. Alternative picture of the effect of the modulation. The
net average flow is Poiseuille-like, but with an effective no-slip
boundary condition located at zeff|.
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in the limit of plates distant from one another H . q-1, K⊥(qH f

∞) = qH.
The fluid flux between the two plates now varies periodically

with x1, and its average reads

Note that, in contrast to the previous case of flow perpendicular
to the grooves, the average hydrodynamic resistance is reduced
by the presence of the grooves for long-wavelength undulations
(lubrication regime qH , 1).

In the opposite limit qH . 1 of a gap H large compared to the
groove wavelength (qH . 1), which is here our main focus, the
grooves increase the overall hydrodynamic resistance, but by a
factor weaker than in subsection A. Again the net effect appears
as an effective slip on the bottom plate at

Alternatively. one can also consider that the bottom plate behaves
as a flat one located at an “extrapolation length”

a value smaller than the one for the parallel case (by a factor of
order 2 for H . q-1).

C. General Case: Transverse Effects. An interesting point
is of course that the “effective slips” generated along the two
directions (x1, y1) are in general different. As a result of this
anisotropy, if a pressure gradient is applied at some angle with
respect to these two main directions, a sideways shear will
develop, at a finite angle with respect to the applied gradient.
Equivalently, through the “extrapolation length” picture, the gap
appears wider for a flow parallel to the grooves (perpendicular to
q), so that the flow slightly deviates from the direction of applied
pressure gradient toward that of the “easy axis” of the system
that is along the grooves. Formally, if both the depth and
wavelength of the grooves are small compared to the characteristic
dimensions of the flow along the surface (RH, q-1 , H), the
appropriate boundary condition is tensorial and mixed:

where Zeff is a 2 × 2 tensor, diagonal in the (x1, y1) base with
eigenvalues zeff| and zeff⊥.

More quantitatively, for a pressure gradient applied at an angle
φ with the y1 direction, i.e., along Y ) cos φ y1 + sin φ x1 (see
Figure 4), the average flux can be written

which clearly shows the two main effects of the modulation to
order R2: a reduction of the amplitude of the main Poiseuille flow
along the pressure gradient direction (recall that 1 - K| < 0) and
the generation at the grooved surface of a sideways shear flow
along y1 (recall that K| - K⊥ > 0).

When is this effect noticeable? One may want to make the
factor K|(qH) - K⊥(qH) large by choosing qH . 1, so that K| -
K⊥ = qH. However, as explained in subsection A, one expects
the effects to saturate for roughly qH ∼ R-1, which makes the
overall correction to the flux of order R, the ratio of the groove
depth RH to the channel height H.

The transverse effect described here may lead to interesting
boundary-controlled flow patterning: by changing the orientation
of the modulation from place to place, one may generate various
flow patterns from a single constant-pressure gradient (see, for
example, ref 5), as the interaction of the various surface-induced
shear flows will generate 3D recirculation structures so as to
satisfy the incompressibility constraint. We claim that the above
description in terms of slip velocity offers a very simple guide for
predicting the geometry of the flows thus generated, as we will
illustrate below for the case of a rather simple channel.

FLOW PATTERN IN A CLOSED CHANNEL
An important example we focus on is the case of a rectangular

channel, with a grooved floor, and such that the grooves are at
an angle θ with respect to the axis of the channel y2 ) x1 sin θ +
y2 cos θ (see Figure 5). We take this patterned channel to be of
thickness H, of width w in the x2 direction, and of length L much
larger than all the above distances. We consider here the fully
developed flow present in most of the channel. At the entrance
and the exit of the patterned section, one expects the flow to evolve
progressively from what it is before or after (i.e., Poiseuille-like)
to this fully developped geometry over an induction length
determined by vorticity diffusion over at least H and at most w.
This length obviously depends on the average or typical flow
velocity, whereas the shape of the fully developed flow does not
in the limit of low Reynolds numbers.

Although an exact solution is beyond reach, we can gain insight
with approximate solutions in the two following cases (which are
not mutually exclusive). First, if the undulation wavelength q and

Figure 4. Top view of an infinite Hele-Shaw cell with grooves on
the floor. A pressure gradient along Y induces a fluid flux J with a
transverse component that tends to slightly align the flow along the
grooves. This transverse effect can be viewed as generated by a
sideways slip on the surface.
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2
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2
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amplitude RH are much smaller than all the dimensions of the
channel, we can adopt the above-mentioned concept of slip
velocities. Second, if the channel is much wider than it is thick
so that w . H, q-1, then we can use the formulas of the preceding
section to analyze the effectively 2D problem that results.

A. Shallow Grooves. When the amplitude of the undulation,
RH, is small compared to the channel thickness, H, the magnitude
of the generated slip will be weak relative to the main Poiseuille-
like flow in the channel. To get an estimate of the structure of
the flow, a possible strategy is to take existing formulas for
pressure-driven flows in rectangular channels and then calculate
the local value of the shear rate γ̆ for each position x2, y2 on the
floor of the channel. As the zeroth-order flow is in the y2 direction,
the resulting slip velocity will be vslip ) -qγ̆(RH)2(sin θx1 + 1/2
cos θy1) ) -qγ̆(RH)2(1/2 sin θ cos θ x2 + (1 - 1/2 cos2 θ)y2).
Then one should solve (probably using numerical methods) the
flow generated by these slip boundary conditions. The main effect
is of course that the component along x2 will generate a slip toward
a side wall so that a transverse pressure gradient will build up to
drive the necessary recirculation of the fluid.

B. Thin Channels. In the case of shallow channels (w . H),
we can closely follow the general description in ref 14. In a thin
channel bounded by side walls, the 2D fluxes (i.e., integrating
over the z direction), are Jx2 ) 0 and Jy2 ) cst ) J, where these
fluxes can be obtained by linear superposition of the quantities
found in the prevoious section (eqs 6 and 13), by averaging over
distances larger than 1/q. Note that this procedure neglects the
exact description of what happens in the vicinity of the lateral
side walls, where over a width ∼H , w more intricate formulas
would be needed.

Of course, as in the preceding subsection, a transverse
pressure gradient will build up to ensure that Jx2 ) cos θJx1 - sin
θJy1 is zero. This allows us to determine 〈∂x1p〉 and ∂y1p as func-
tions of the constant Jy2 ) J. With these known, it is simple to use
(4) and (11) to obtain the flow profile in the horizontal plane to
order R2:

This expression shows that the net flux is along y2 as the second
term on the rhs carries no net flux, with the flux of the shear
flow due to the slip velocity compensated by a Poiseuille recircula-
tion flow. This term appears in addition to the Poiseuille flow along
the axis of the channel, the amplitude of which is slightly reduced
as a consequence of the modulation.

Together these two terms correspond to a helicoidal pattern
of the streamlines (similar to the sketch in Figure 6), with an
apparent slip of the fluid on the bottom floor at vslip ) (3R2J/H)-
(K|sin θx1 + K⊥ cos θy1).

An alternative way to write the flow is

where K̃ and z̃eff are averages of their | and ⊥ counterparts: K̃ )
K| sin2 θ + K⊥ cos2 θ and z̃eff ) zeff| sin2 θ + zeff⊥ cos2 θ. Again eq
19 describes a Poiseuille-like flow along the channel (with an
effective bottom boundary) plus a transverse recirculation corre-
sponding to a slip along x2 of magnitude -(3R2J/H)(K| - K⊥) sin
θ cos θ x2. Equation 19 clearly shows that the existence of this
transverse slip and recirculation relies on the difference between
K| and K⊥ and vanishes if the channel axis coincides with one of
the principal axis of the modulation (θ ) 0 or θ ) π/2).

A measure of the helicity of the flow can be obtained from the
last equation in the following way. If one analyzes the rate of shear(14) Ajdari, A. Phys. Rev. E 2002, 65, 016301.

Figure 5. Top view of a channel of width w and main axis y2. The
undulation is at an angle θ with this axis, so the circulation of a flux
along the channel generates a slip vslip on the bottom plate toward
the left, schematically represented here. The presence of the side
walls consequently leads to a positive pressure difference between
the left and the right driving recirculation. As a result, the flow below
the top surface is slightly biased toward the right, at an angle Ω with
the channel axis. The streamlines altogether are expected to have a
helicoidal shape, following vslip on the lowest part of the channel and
recirculating at an angle Ω in the top part.

Figure 6. Schematic diagram of a microchannel with square
grooves in the bottom wall. Below the channel to the right, the average
flow profile in the cross section is drawn schematically. The ribbon
indicates schematically a typical helical streamline in the channel.
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2
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H2 ]y2 + R26J
H[3

2
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2
R2(1 - K̃))[(H - z)(z - z̃eff)

H2 ]y2 +
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just below the flat top plate, the ratio of the components along x2

and along y2 provides a measure of the tangent of the angle Ω
between the flow there and the axis of the channel. This tangent
is given by

This result is expected to be strictly valid in the combined limit
of R , 1 and RqH , 1, but may hold as a reasonable guide to
provide an order of magnitude estimate even when the inequalities
are not so strict. Actually, following the discussion in subsection
C of the previous section, we anticipate that, for a given value RH
for the groove depth, the maximum effect corresponds to RqH ∼
1, so that a rough estimate of the largest angle obtainable is

EXPERIMENTAL CHECK IN MICROFABRICATED
PDMS CHANNELS

We fabricated microchannels with grooves in one wall in order
to test the prediction in eq 20 of the pitch of the trajectories in a
channel flow over obliquely oriented undulations. (The general
form of the channels is shown schematically in Figure 6.) We
fabricated the channels in poly(dimethylsiloxane), a clear elasto-
meric polymer. We used methods described elsewhere.15 Briefly,
we made master structures with two-step photolithography in
SU-8: The first layer of photolithography defined a positive image
of our channel structure; the second layer defined a positive image
of the pattern of ridges. The pattern was aligned to lie on top of
the channel structure in the first layer. We measured the
dimensions of the channel and the undulations using a profilo-
meter. We made molds of the positive structure in PDMS. To
close the channel, we exposed the PDMS to a plasma for 1 min
and sealed it to a glass slide.

To evaluate the pitch of trajectories, we injected a narrow
stream of a dye solution along one side of the channel as shown
in Figure 7; a broader stream of clear solution was injected
alongside the dyed stream. The flow rates of the two streams were
imposed with a syringe pump. The clear stream was driven at 20
times the flow rate of the dyed stream by using syringes of

different diameters. The first millimiter of channel after the
junction was flat (no grooves), which allowed the setting in of a
steady Poiseuille profile with the dyed liquid confined to a narrow
stream on the side of the channel. As the flow entered the
patterned area, the narrow stream of dye was convected across
the top of the channel, so that it occupied the region just below
the ceiling of the channel. Consequently, this procedure allowed
us to measure tan(Ω) as defined in eq 20, using optical micro-
graphs like the one in Figure 7. The predicted ( eq 20) and
measured values of tan(Ω) are given in Table 1 for a few different
values of qh and R.

The predictions are qualitatively correct for R < 0.3. In all
cases, the order of magnitude is correct and so are the trends in
terms of variations with the parameters R and qH. Deviations of
the absolute values may be due to the fact that the grooves are
squared and not sinusoidal, that RqH is often of order 1, which
limits the validity of the perturbative expansion, and that the aspect
ratio w/H of the channels is not very large, which makes the
measurement of Ω difficult and may slightly compromise the
accuracy of our model that is based on a wide, thin channel. Note
that we observe qualitatively the same flow for all Re < 100.

DISCUSSION
Using a simple perturbation approach, we have shown that the

anisotropy of groove patterns on a wall allows one to engineer
the flow in its vicinity, in a way that can be understood using
effective slip boundary conditions. Owing to the necessary
recirculation imposed by other boundaries, this slip leads to 3D
flows. We then experimentally demonstrated this type of flow in
a simple geometry, namely, a rectangular channel with a grooved
floor. We have also provided simple tools that permit semiquan-
titative predictions of the effects to be expected.

To quantify more precisely the effects obtainable, much
remains to be done, both numerically (CFD) and experimentally,
to explore further the exact structures of flow for grooves of
various depth and aspect ratio. An optimization of the shape of
the grooves could come out of such studies.

More interesting is probably the exploration of the 3D flows
generated by various 2D patterns of grooves. A grooved section

(15) McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H.; Schueller,
O. J. A.; Whitesides, G. M. Electrophoresis 2000, 21, 27-40.

Figure 7. Optical micrograph taken from above of a stream of black
dye flowing in a microchannel such as the one shown in Figure 6. w
) 200 µm, H ) 79 µm, q ) 2π/100 µm, and R ) 0.34. The drawing
on the left shows schematically the Y junction at the entrance of the
channel; a narrow stream of black dye in water is injected alongside
a broad stream of clear water (flow rate of the clear stream 20 times
that of the dyed one). The average flow speed in the channel is 1
cm/s (Reynolds number Re ∼ 1). The pitch of the helical streamlines
in the flow, as measured by the angle Ω, is evaluated as shown by
the dashed lines.

tan(Ω) )
R2(K|(qH) - K⊥(qH)) cos θ sin θ

1 - R2(3/2 - K̃(qH))
(20)

tan(Ω)|max = R cos θ sin θ (21)

Table 1. Predicted and Measured Values of the Pitch
(tan Ω) of the Helical Trajectories in a Channel with
Square Grooves on the Floora

tan(Ω)(×100)

geometrical parameters predicted measured

H ) 79; qH ) 5; R ) 0.134 4.1 6.0
H ) 103; qH ) 6.5; R ) 0.17 7.7 6.4
H ) 67; qH ) 4.2; R ) 0.20 7.5 7.5
H ) 74; qH ) 4.6; R ) 0.24 11.1 8.8
H ) 79; qH ) 5.0; R ) 0.34 18.0 16.8
H ) 75; qH ) 2.4; R ) 0.10 1.5 2.4
H ) 69; qH ) 2.2; R ) 0.20 5.8 6.6
H ) 82; qH ) 2.6; R ) 0.26 9.6 10.0
H ) 87; qH ) 2.7; R ) 0.37 17.8 16.1

a In all cases w ) 200 µm, H is given in micrometers, and the
grooves are oriented at an angle θ ) π/4 with respect to the principal
axis of the channel. Predicted values are obtained using formula 20
for sinusoidal grooves; experimental values are evaluated as described
in Figure 7 (flow rate of the clear stream fixed to 20 times that of the
dyed one, Re ∼ 1).

Analytical Chemistry, Vol. 74, No. 20, October 15, 2002 5311



in a simple rectangular channel can induce swapping of the flow
lines located in the vicinity of each of the side walls. Patches of
parallel grooves with perpendicular “axes” allow the generation
of parallel counter-rotating helices. We have shown that a periodic
structure with staggered herringbone-shaped grooves generates
Lagrangian chaos at low Reynolds number.5 This flow can be used
to speed up mixing in microfluidic devices. How designed flows
over patterned surfaces influence exchanges of heat or matter
between the surface and the bulk is also an interesting topic.

Although we have focused here on pressure-driven flows,
electroosmotic flows can also be designed using either shape or
charge patterns (or both), which could be of importance in
microfluidics systems.14,16

It is important to emphasize that this exploration is not just a
theoretical fancy, as the patterning of surfaces proposed here is
compatible with planar lithography. These flows can thus not only
be experimentally tested but also easily and quickly implemented
in a parallel fashion either at many places on the same (macro-
scopic) surface or on many devices.

APPENDIX
For the sake of completeness, we give here the complete

formula of the sinusoidal terms omitted in eqs 4 and 11. The
periodic terms corresponding to a flow along x1, i.e., perpendicular
to the grooves read

with

For the flow along y1, we obtain
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T|(x1, z) ) -R
dgq

dz
(z) cos(qx1) + 1

2
R2 dhq

dz
(z) cos (2qx1) (22)

gq(z) )
sinh(qH)z sinh(q(H - z)) - qH(H - z) sinh(qz)

sinh(qH)2 - (qH)2

(23)

hq(z) ) -K|(qH)g2q(z) + (H/2)l2q(z) (24)

lq(z) ) [sinh(qH) sinh(q(H - z)) - qH sinh(qz) +

sinh(qH)qz cosh(q(H - z)) - qHq(H - z) cosh(qz)] ×
[sinh(qH)2 - (qH)2]-1 (25)

T⊥(x1, z) ) -R
sinh(q(H - z))

sinh(qH)
cos(qx1) -

1
2
R2K⊥(qH)

sinh(2q(H - z))
sinh(2qH)

cos(2qx1) (26)
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