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Iron deficiency anemia (IDA) is a nutritional disorder that impacts over one billion people worldwide; it may

cause permanent cognitive impairment in children, fatigue in adults, and suboptimal outcomes in preg-

nancy. IDA can be diagnosed by detection of red blood cells (RBCs) that are characteristically small (micro-

cytic) and deficient in hemoglobin (hypochromic), typically by examining the results of a complete blood

count performed by a hematology analyzer. These instruments are expensive, not portable, and require

trained personnel; they are, therefore, unavailable in many low-resource settings. This paper describes a

low-cost and rapid method to diagnose IDA using aqueous multiphase systems (AMPS)—thermodynami-

cally stable mixtures of biocompatible polymers and salt that spontaneously form discrete layers having

sharp steps in density. AMPS are preloaded into a microhematocrit tube and used with a drop of blood

from a fingerstick. After only two minutes in a low-cost centrifuge, the tests (n = 152) were read by eye

with a sensitivity of 84% (72–93%) and a specificity of 78% (68–86%), corresponding to an area under the

curve (AUC) of 0.89. The AMPS test outperforms diagnosis by hemoglobin alone (AUC = 0.73) and is com-

parable to methods used in clinics like reticulocyte hemoglobin concentration (AUC = 0.91). Standard ma-

chine learning tools were used to analyze images of the resulting tests captured by a standard desktop

scanner to 1) slightly improve diagnosis of IDA—sensitivity of 90% (83–96%) and a specificity of 77% (64–

87%), and 2) predict several important red blood cell parameters, such as mean corpuscular hemoglobin

concentration. These results suggest that the use of AMPS combined with machine learning provides an

approach to developing point-of-care hematology.

Introduction

Over one billion people are estimated to suffer from iron defi-
ciency anemia (IDA). As a result of depleted iron stores in the
body, adults may experience chronic fatigue, among other
symptoms.1 IDA during pregnancy increases the risk of pre-
term birth and low birth weight;2 infants with untreated IDA
can have permanent cognitive impairments and delayed phys-
ical development.3 Iron supplements provide a simple inter-
vention to treat IDA, but the use of iron supplements when
IDA is not present can result in iron overload.4 The correct di-
agnosis of IDA is important to provide patients with effective

care. While current clinical capabilities can effectively diag-
nose IDA in the developed world, many countries lack the ex-
pensive instrumentation necessary to detect IDA, especially at
the point-of-care.5

Red blood indices—measurements of the properties and
numbers of red blood cells—are commonly used for the diag-
nosis of IDA, because they (in contrast to serum iron or ferri-
tin) respond quickly to changes in the iron level in the body,
and require a less painful and less invasive procedure for the
patient than the gold standard measurement (iron in bone
marrow).6 Red blood cell indices measured by a complete
blood count require a hematology analyzer (a flow cytometer,
typically with impedance, photometry, and chemical staining
capabilities). A hematology analyzer, however, is expensive
($20 000–$50 000) and requires highly trained personnel and
significant technical maintenance. An inexpensive, rapid, and
simple method that approaches the specificity and sensitivity
provided by a hematology analyzer could find widespread
clinical use.

An inexpensive tool for the diagnosis of IDA—especially
one appropriate for point-of-care (POC)—is mainly needed in
resource-limited countries where the rate of IDA is often high
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—affecting nearly 20% of the population—and where hema-
tology analyzers are only available in major hospitals.7

Identifying microcytic, hypochromic anemia is a potential
method to screen for IDA

“Anemia” is defined as a condition in which the patient has a
low hemoglobin concentration (HGB) in the blood.8 Various
methods have been developed to diagnose anemia in low-
resource settings, either by measuring the number of red
blood cells (RBCs) per unit volume through spun hematocrit
(HCT), or by measuring HGB directly. Anemia, both chronic
and acute, can, however, have many causes, and a diagnosis
limited to “anemia” with no further detailed cellular and/or
molecular description does not necessarily provide enough in-
formation for the effective treatment of a patient.

Anemia associated with microcytic (i.e., smaller cells than
normal) and hypochromic (i.e., lower concentration of hemo-
globin per cell than normal) cells, on the other hand, is
mostly a result of IDA or thalassemia trait (α or
β-thalassemias).9,10 IDA affects >10 times more people glob-
ally than does β-thalassemia trait.7,11,12 Due to the domi-
nance of IDA among other conditions causing microcytic, hy-
pochromic (micro/hypo) red blood cells, several studies have
shown good diagnostic accuracy for IDA by measuring the
number of hypochromic red blood cells.13–15 Micro/hypo ane-
mias are also associated with a reduction in the mass density
of red blood cells.16–18

A tool to distinguish micro/hypo anemia, and thus IDA,
quickly from normal blood and other forms of anemia would
improve the effectiveness of healthcare, and promote a better
use of resources at the level of primary healthcare, in
resource-limited countries.

Aqueous multiphase systems (AMPS) can identify the
presence of low density red blood cells present in micro/hypo
anemia

Aqueous multiphase systems (AMPS) are aqueous solutions of
polymers and salts that spontaneously phase segregate and
form discrete, immiscible layers.19–25 Between each phase is
an interface with a molecularly sharp step in density; these
steps can be used to separate subpopulations of cells by den-
sity. The phases of an AMPS can be tuned to have very small
differences in density (Δρ < 0.001 g cm−3), can be made bio-
compatible, are thermodynamically stable, and reform if
shaken. These properties make AMPS useful for separating
cells; the stability of these systems removes the need for gen-
tle handling that traditional gradients in density require, and
makes AMPS particularly well suited for applications in point-
of-care diagnostics. We previously used AMPS as a tool to en-
rich reticulocytes from whole blood,26 and to detect sickle cell
disease.27,28

Here, we demonstrate the use of AMPS to diagnose IDA,
by exploiting the fact that RBCs in patients with micro/hypo
anemia have lower density than those of healthy patients.
Using only a drop of blood (a volume easily obtainable from

a finger prick), we can detect, by eye, low density RBCs and
diagnose IDA in under three minutes; this method had a true
positive rate (sensitivity) of 84%, with a 95% confidence
interval (CI) of 72–93%, and a true negative rate (specificity)
of 78% (CI = 68–86%).29

We can slightly improve the diagnostic accuracy of our
system by imaging each AMPS test with a digital scanner and
analyzing the distribution of red color—corresponding to the
RBCs—found in the tube. Using standard machine learning
protocols,30–32 we are able to diagnose IDA with a sensitivity
of 90% (83–96%) and a specificity of 77% (64–87%), and were
able to detect hypochromic RBCs above a threshold of 3.9%
with a sensitivity of 96% (CI = 88–99%) and a specificity of
92% (CI = 84–97%). These results suggest that a simple opti-
cal reader paired with appropriate algorithms could provide
rapid, reader-insensitive diagnosis.

Interestingly, using machine learning, we can also predict
many of the important values measured during a complete
blood count (namely, values pertaining to red blood cells or
“red blood cell indices”). Red blood cell indices are used to
diagnose many diseases and, therefore, predicting their
values quickly and simply may be clinically useful.

Experimental design
The sedimentation rate of red blood cells is related to
important red-cell indices

The sedimentation rate of red blood cells through a fluid is a
function of several physical characteristics of the cells: mass,
volume, size, shape, deformability, and density (mass per
unit volume). These characteristics are related, directly or in-
directly, to a number of red blood cell indices, including,
mean corpuscular volume (MCV, fL) or the average size of a
red blood cell, mean corpuscular hemoglobin (MCH, pg per
cell) or the average amount of hemoglobin per cell, mean cor-
puscular hemoglobin concentration (MCHC, g dL−1) or the
average amount of hemoglobin per volume of blood, red
blood cell distribution width (RDW, %) or the distribution in
volume of the RBCs. These characteristics, in addition to the
hematocrit (HCT)—the ratio of the volume of the RBCs to the
total volume of blood—can be used to derive the total num-
ber of RBCs (#RBCs) and the total hemoglobin concentration
in the blood (HGB, g dL−1).

Many hematology analyzers use these indices to categorize
red blood cells. The percentage of red blood cells that are
microcytic (% micro) is defined as the fraction of cells below
a specific MCV. The percentage of red blood cells that are hy-
pochromic (% hypo) is defined as the fraction of cells below
a specific MCHC.

The hematology analyzer used in this study (ADVIA 2120,
Siemens) defines % micro as the percentage of RBCs of MCV
< 60 fL and % hypo as the percentage of RBCs with MCHC <

28 g dL−1. IDA corresponds to a decrease in MCV, MCH,
MCHC, and HGB, and an increase in RDW, % hypo, and %
micro.33 Several other hemoglobinopathies have been shown
to affect the density of RBCs and could affect the
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performance of a density-based test. Sickle cell disease,34 and
spherocytosis35 are known to increase the density of some or
all of the population of RBCs, while β-thalassemia,33

α-thalassemia,36 and malaria37 decrease RBC density.

Classifying blood samples using hematological indices

Here, we discuss several conditions with overlapping popula-
tion. Using hematological parameters (i.e., red blood cell in-
dices), we define four different states: 1) hypochromia—the
condition of having hypochromic RBCs—as % hypo ≥ 3.9%,
2) micro/hypo anemia—the condition of having hypochromic
RBCs and low HGB—as % hypo ≥ 3.9% and when HGB <

12.0 g dL−1 for females over 15 years, <13.0 g dL−1 for males
over 15 years, <11.0 g dL−1 for children under 5 years, and
<11.5 g dL−1 for children 5 to 15 years,8 3) IDA as micro/hypo
anemia when % micro/% hypo ≤ 1.5, and 4) β-thalassemia
trait for % micro/% hypo > 1.5.5,13,38 Fig. S1† is a flow chart
illustrating the classification.

Designing AMPS to identify micro/hypo RBCs

AMPS are aqueous buffered mixtures of biocompatible poly-
mers that spontaneously separate into thermodynamically sta-
ble layers (i.e., phases) possessing distinct densities. We have
previously demonstrated over 300 AMPS ranging from two to
six phases.19 An AMPS with n total phases will contain n + 1
interfaces (e.g. in a two-phase system: air/top phase, top
phase/bottom phase, and bottom phase/container). In order
to detect the presence of microcytic and hypochromic red
blood cells, a properly designed AMPS should: i) have a top
layer with density greater than that of plasma and its compo-
nents (≥1.025 g cm−3) in order to minimize dilution of the
AMPS,39 ii) have a bottom layer less dense than the average
red blood cell density (which are represented by a Gaussian
distribution where mature erythrocytes have a density of
1.095 g cm−3 and immature erythrocytes (i.e., reticulocytes) of
1.086 g cm−3) such that normal blood will pack at the bottom
of the tube,40–42 iii) maintain biocompatibility by tuning the
pH (7.4) and osmolality (290 mOsm kg−1) to match blood,43

and iv) undergo phase separation in a short amount of time
(≤5 minutes) under centrifugation (13 700 g, the typical
speed of the StatSpin CritSpin centrifuge used in this study).

We designed a three-phase AMPS (IDA-AMPS) to capture
microcytic and hypochromic RBCs at two liquid/liquid inter-
faces, and to provide information about the density distribu-
tion of the RBCs of a patient. IDA-AMPS contained 10.2% (w/
v) polyĲvinyl alcohol) (78% hydrolyzed, MW ∼ 6 kD—
polyĲvinyl alcohol) is synthesized by hydrolyzing polyĲvinyl
acetate) to a certain degree, in this case, 78%), 5.6% (w/v) dex-
tran (MW ∼ 500 kD), and 7.4% (w/v) Ficoll (MW ∼ 400 kD).
The density of the phases were ρtop = 1.0505 g cm−3, ρmid =
1.0810 g cm−3, ρbot = 1.0817 g cm−3 as measured by a U-tube
oscillating densitometer (DMA 35, Anton-Paar).

An AMPS diagnostic can be easy to use, rapid, and fieldable

We previously demonstrated the use of a point-of-care assay
for sickle cell disease using AMPS.27,28 A similar strategy is

employed here. Briefly, a plastic microhematocrit tube is
preloaded with 15 μL of AMPS solution that has been sealed
at the bottom with a proprietary white sealant (Critoseal,
Leica), and centrifuged for 2 minutes at 13 700 g in a hemato-
crit centrifuge (CritSpin, Iris Sample Processing) in order to
separate the phases.

A drop (5 μL) of blood is loaded at the top of the tube
through capillary action enabled by a small hole in the side
of the tube;27 the hole allows the blood to enter the tube up
to, but not beyond the hole (by capillary wicking). We previ-
ously demonstrated that blood can be loaded using this de-
sign with a coefficient of variance (CV) in the volume loaded
<4%.28 An elastomeric silicone sleeve is then slid over the
hole to prevent the blood from leaking during centrifugation.
Up to 12 tubes can then be loaded at the same time into the
hematocrit centrifuge we used and spun for the desired time.
In the current study we used a centrifuge that cost ∼$1600
(CritSpin, Iris Sample Processing), but our lab has recently
transitioned to using a more portable centrifuge
manufactured by HWLab (Zhejiane Huawei Scientific Instru-
ment Co. LTD, www.hwlab.cn) that provides similar perfor-
mance and costs $155 ($60 each for orders >400 units). The
cost of the materials and reagents necessary to fabricate a
test at the laboratory scale is ∼$0.20.27 The total time needed
to perform this assay is less than ten minutes (although it
can be done in as little as three minutes, see Results for more
details). The power requirement for a small centrifuge, while
not ideal, can be met using a battery. A lead-acid 12 V car
battery is perhaps the best choice because it is widely avail-
able, has a long life cycle, is relatively low cost, and can be
charged by nearly every car and truck in the world as well as
by solar panels. In situations where battery power is not feasi-
ble, human-powered centrifuges could provide the required
centrifugal force; our group and others have developed centri-
fuges using egg beaters, salad spinners, and bicycles, among
other methods.44,45 All of the components for the IDA-AMPS
diagnostic, including a car battery to power the centrifuge,
can fit into a backpack.28

Results and discussion
Visual analysis of IDA-AMPS tests after centrifugation pro-
vides a simple diagnostic test for micro/hypo anemia

The diagnostic readout of an IDA-AMPS test is designed for
the naked eye to visualize the presence or absence of red
color above the packed hematocrit at the bottom of the tube.
IDA-AMPS provides three bins of density in which red blood
cells can collect: 1) the top/middle (T/M) interface (RBCs ≤
1.081 g cm−3), 2) the middle/bottom (M/B) interface (RBCs >

1.081 g cm−3 and ≤1.0817 g cm−3), and 3) the bottom/seal (B/
S) interface (RBCs ≥ 1.0817 g cm−3) (Fig. 1). White blood
cells (leukocytes) collect at the T/M interface. In some cases
white blood cells can agglomerate with RBCs, resulting in a
slight red color at the T/M interface, even in a normal
sample.
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Discarded blood samples were obtained from Children's
Hospital Boston (n = 152, see Table S2† for a summary of the
populations of interest) along with complete blood counts
from a hematology analyzer (ADVIA 2120, Siemens). For the
purpose of understanding the optimum timing for a test, the
assay was performed by stopping centrifugation every two mi-
nutes and imaging the tubes using a flatbed scanner (Epson
Perfection V330 Photo). After ten minute of centrifugation at
13 700 g, nearly all of the RBCs reached their equilibrium po-
sitions; at lower centrifugation times red color was found
throughout the phases of the AMPS in samples having micro/
hypo RBCs. The time-dependence of the distributions at
short centrifugation times provides additional information
regarding the size and density distribution of red blood cells.
For this reason—and because a rapid test is desirable—we
chose results from t = 2 minutes and evaluated the ability of
blinded readers to diagnose hypochromia, micro/hypo ane-
mia, and IDA.

Three readers were trained using a guide comprised of im-
ages of tests (Fig. S15†) to classify the amount of red color
above the packed hematocrit (i.e., the redness threshold) as
1) none or nearly none, 2) some, 3) moderate, 4) strong, and
5) very strong. In some of the cases, red cells were more prev-
alent at the interfaces, while in others, the red color was
highly visible in the phases of the AMPS. The guide was avail-
able to readers during each reading for reference. An average
score was determined based on concordance between at least
two of the readers.

Receiver operating characteristic (ROC) curves were gener-
ated (Fig. 2) by varying the redness threshold (1–5) for the di-
agnosis of hypochromia, micro/hypo anemia, and IDA. A

ROC curve is generated by calculating and plotting the true
positive rate (sensitivity) versus the false positive rate (1 –

specificity) at varying threshold values—in this case the red-
ness threshold. The area under the curve (AUC) is highest for
hypochromia (0.98, CI = 0.96–1.00); the test is excellent at
detecting the presence of hypochromic RBCs. Perfect diag-
nostic accuracy (i.e., no false positives or false negatives)
would result in an AUC = 1.00. The ability to predict micro/
hypo anemia and IDA for the IDA-AMPS test is lower, with an
AUC of 0.89 (CI = 0.83–0.94) and 0.88 (CI = 0.81–0.94). For
IDA, this corresponds to a sensitivity of 84% (CI = 72–93%)
and a specificity of 78% (CI = 68–86%) at a maximum effi-
ciency cutoff threshold of redness >2 (some red above the
packed hematocrit).

As a diagnostic for IDA, the performance of IDA-AMPS
(AUC = 0.89) exceeds that of using only hemoglobin concen-
tration (AUC = 0.73)46 (often the only metric available in low-
resource settings). The AUC, sensitivity, and specificity of
IDA-AMPS is also comparable to that of a test for IDA using
the reticulocyte hemoglobin concentration (CHr)—a red
blood cell parameter measured by a hematology analyzer

Fig. 1 Design of IDA-AMPS rapid test loaded with blood before and
after centrifugation for a representative IDA and Normal sample. Blood
is loaded into the top of the tube, from a finger prick, using capillary
action provided by a hole in the side of the tube. A silicone sleeve is
used to cover the hole to prevent leakage during centrifugation. Nor-
mal blood packs at the bottom of the tube, while less dense RBCs can
be seen packing at the interfaces between the phases and inside of the
phase of the AMPS. Normal and IDA blood can be differentiated, by
eye, after only 2 minutes of centrifugation.

Fig. 2 Receiver operating characteristic (ROC) curves for (A)
hypochromia having different threshold values for the percentage of
hypochromic red blood cells (% hypo) and (B) diagnosis of
hypochromia (% hypo > 3.9%), micro/hypo anemia, and IDA as
determined by visual evaluation of the IDA-AMPS test. Each point of
the curve represents the sensitivity and specificity of the test for a
given redness threshold (1–5) determined by the reader.
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(AUC of 0.91, sensitivity of 93.2% and a specificity of
83.2%).47 Although not perfect, this performance for CHr has
been high enough to gain popularity in clinical use.48 The
similar AUC of our test for diagnosing IDA (0.89 vs. 0.913)
suggests that it could be clinically useful as well, especially in
LMICs where a hematology analyzer is often unavailable.

We analyzed the concordance between blinded readers
and found excellent intra-reader agreement for duplicates of
the sample blood sample. On average the three readers
showed a Lin's concordance correlation coefficient, ρc of 0.99
(a ρc of 1.00 is perfect concordance).49 Inter-reader agreement
was slightly lower; we found a ρc of 0.91 between the three
readers (Table S3†). These results suggest that 1) the IDA-
AMPS tests are highly reproducible for the same samples,
and 2) the lower inter-reader agreement may be improved
with additional training for the readers.

Digital analysis of IDA-AMPS improves diagnostic
performance

We sought to improve our ability to diagnose IDA, or, at the
very least, provide reader-insensitive and automated method
to make this diagnosis, by analyzing the images obtained
using a flatbed scanner. Digital analysis of the AMPS tests
was performed using the following steps (Fig. 3): i) a flatbed
scanner in transmission mode imaged up to 12 tests simulta-
neously (Epson Perfection V330 Photo), ii) using a custom
program written in Python (iPython Notebook) individual
capillary tubes were detected and cropped, and the tube im-
age was converted to hue-saturation-value (HSV) colorspace,
iii) the HSV value of each pixel was converted to its
corresponding S/V value, and iv) a one dimensional plot of “red
intensity” versus distance above the (cropped) seal was compiled
by summing the S/V values for each row of pixels and saved for
later analysis. Further details can be found in the ESI.†

Fig. 4 shows, for a representative normal (A) and IDA (B)
sample, i) a scanned test image, ii) its corresponding red
intensity image where each pixel was converted to S/V, iii)

1-dimentional red intensity trace, and iv) the first derivative
of the 1-dimentional red intensity trace. Digital analysis of
images of the IDA-AMPS tests enables the direct comparison
of a large number of samples. In Fig. 5, the average red inten-
sity for all normal and micro/hypo samples is plotted as a
function of distance from the sealed (bottom) end of the tube
for different centrifugation times; the shaded region repre-
sents the 99% confidence intervals. The red intensity is
highest at distance = 0 cm where the hematocrit packs at the
bottom of the tube (the white plastic seal is excluded during
analysis and the loading end of the tube is excluded from
Fig. 5 for clarity). After 2 minutes of centrifugation, the red
intensity difference between the normal and micro/hypo ane-
mic samples in the majority of the tube is high; most of the
red color is spread throughout the phases. As the centrifuga-
tion time increases, the signal decreases in the phases and
increases at the interfaces as red blood cells reach their equi-
librium position based on their density.

Machine learning can diagnose IDA as an alternative to
blinded readers

Machine learning is a powerful approach for finding an effi-
cient way to make predictions or decisions from data.31,32

The general problem of predicting classes, or labels, from
data is called “classification.” Here we apply standard ma-
chine learning techniques to the classification problem of
distinguishing micro/hypo anemic samples from normal
samples using images of the IDA-AMPS test. See the ESI† for
more details.

Using the red intensity traces as input data, we trained a
machine-learning algorithm (logistic regression) to discrimi-
nate micro/hypo anemic from normal samples; each sample
was given a score based on its difference from an average
normal sample. Using these scores, receiver operating charac-
teristic (ROC) curves were generated for IDA-AMPS for t = 2,
4, 6, 8, and 10 min by changing the decision threshold for
micro/hypo anemia using the assigned score. Fig. 6A shows

Fig. 3 Schematic of the method used to analyze the quantity and location of red blood cells in an AMPS test using a digital scanner and a custom
computer program.
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Fig. 4 Examples of IDA-AMPS tests after 2 minutes of centrifugation
for a representative normal (A) and IDA (B) sample. Included is an im-
age of the tube and its corresponding image with pixels converted to
S/V, 1-D red intensity trace, and the first derivative of the trace. Normal
RBCs packs at the bottom of the tube, similarly to a hematocrit, while
less dense RBCs can be seen packing at the interfaces between the
phases and inside of the phases of the AMPS. White blood cells (leuko-
cytes) pack at the T/M interface and can sometimes agglomerate with
RBCs, even in normal blood, causing a slight red color at the T/M
interface. For clarity the top (loading port) of the tubes is not shown.

Fig. 5 A) Example of micro/hypo sample (laid on its side) after 2
minutes of centrifugation and B) red intensity versus distance plots
averaged for 152 samples showing discrimination between normal
(solid blue) and micro/hypo anemic (dashed red) samples at 2, 6, and
10 minutes centrifugation.
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the area under the curve (AUC) values obtained from these
ROC curves. The algorithm randomly samples from the
dataset and optimizes the hyperparameters using a validation
set of data, and then repeats the process many times. Once
the algorithm has been optimized using the training and vali-
dation data sets, it analyzes the test data set only one time.
For this reason, the results for the AUC calculation are
presented without error bars. At short centrifugation times,
the test provides excellent discrimination for micro/hypo ane-
mia; the AUC for IDA-AMPS diminishes after 6 minutes of
centrifugation. These data suggest that the optimum centrifu-
gation time for the assay is 2 minutes.

Using the machine learning algorithm, we are able to dis-
tinguish hypochromia from normal samples with an AUC of
0.98. For micro/hypo anemia we found an AUC of 0.93, and
for IDA we found an AUC of 0.90, corresponding to a sensitiv-
ity of 90% (CI = 83–96%) and a specificity of 77% (CI = 64–
87%) (Fig. 6B). Table 1 provides a comparison of AUC values
for visual and digital (machine learning) evaluation of several

important subpopulations. These results indicate 3 things: 1)
both digital and visual analysis are excellent at detecting the
presence of hypochromic RBCs (i.e. hypochromia). 2) In all
cases, the machine learning results are either slightly better
or similar to visual evaluation. Depending on the use case,
this suggests that the IDA-AMPS test might be best used
alongside a low-cost optical detector (e.g., a desktop scanner)
or read by the naked eye, with some trade-off between cost
and diagnostic accuracy. 3) Interestingly, our test is able pre-
dict hypochromia, micro/hypo anemia, and IDA in women
better than men. The AUC for all women in our data set (n =
74) is 0.95 compared to 0.86 for men (n = 78) and, impres-
sively, is a perfect 1.00 for women ≥15 years (n = 47). This
difference may be because the normal range of HGB and
MCV for women is lower than for men and the current den-
sity of the phases of the AMPS used here is closer to the den-
sity of RBCs in female blood.50 An AMPS with a slightly
denser bottom phase density might improve the performance
in diagnosing the male population (though with a possible
tradeoff in performance for women).

The IDA-AMPS system did not differentiate between IDA and
thalassemic traits

One potential confounding factor for a diagnostic that evalu-
ates the presence of low-density RBCs is other hemoglobinop-
athies. Beta-thalassemia minor (i.e. β-thalassemia trait, β-TT)
and α-thalassemia trait are benign genetic disorders that can
present a confounding diagnosis to IDA because both condi-
tions result in microcytic and hypochromic red blood cells.
Identification of thalassemic trait is desired to aid (through
genetic counseling) in prevention of β-thalassemia major,
HbH disease, and hemoglobin Bart's hydrops fetalis syn-
drome.10 Misdiagnosis of β-TT as IDA has been shown to
propagate β-thalassemia major, a condition that requires life-
long blood transfusions.51 Misdiagnosis of IDA in a thalasse-
mic trait patient who is not iron deficient, on the other hand,
may result in unnecessary oral iron supplementation therapy
and an increased risk of malaria in pregnant women and
young children living in endemic areas.52 Several RBC indices
have been shown to provide discrimination between β-TT
from IDA.53 We were not, however, able to obtain enough
β-TT samples to determine the discriminative ability of the
test reliably. Testing on a larger population that includes pa-
tients with β-TT (and other thalassemias) might be needed
for our test to be implemented in regions with a high preva-
lence of β-TT; many Mediterranean countries have a preva-
lence approaching 10%.12 Many countries in Sub-Saharan Af-
rica and parts of India, however, have a prevalence of β-TT
<3% and some level of uncertainty in differentiating β-TT
and IDA might be acceptable.54

Machine learning can be used to predict red blood cell
indices

In the process of identifying micro/hypo anemia, we noticed
that the characteristic curves of red intensity provided an

Fig. 6 A. Area under the curve (AUC) values for classifying micro/hypo
anemia at 2–10 minutes centrifugation time determined by machine
learning (n = 152). Perfect diagnostic accuracy (compared to
classification by a hematology analyzer) would result in an AUC = 1.00.
For the IDA-AMPS test, the best discrimination between normal and
micro/hypo anemic samples is, therefore, at 2 or 4 minutes centrifuga-
tion. B. Receiver operating characteristic (ROC) curves for diagnosis of
hypochromia (% hypo > 3.9%, solid black line), micro/hypo anemia
(dashed red line), and IDA (dotted blue line) as determined by machine
learning.
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information-rich picture of the dynamics of red blood cells
moving through AMPS. The way in which an object moves
through an AMPS is related to the density, shape, and size of
that object. Many of the parameters measured by a hematol-
ogy analyzer—so called red blood cell indices—should be re-
lated to the distribution and movement of red blood cells in
an AMPS. Given the ability of our machine learning approach
to identify micro/hypo anemia as well as a trained human
user, we tested the ability to use the images of blood moving
through the IDA-AMPS tests to predict common red blood
cell indices. A rapid and inexpensive test that could predict
red blood cell indices could have important clinical
implications.

Using standard machine learning techniques for this “re-
gression” problem, we were able to predict red blood cell in-
dices from the 1D representation of the output of the IDA-
AMPS system (see ESI† for details).30–32 We guarded against
over-fitting using repeated random sub-sampling validation,
in which we randomly sampled a training set and a valida-
tion set 500 times, and averaged the performance across all
validation sets. For each blood parameter we wished to pre-
dict, we independently repeated our cross-validated training
approach. We included blood parameters we believed would
yield good regression performance (those related to red blood
cells, % hypo, HGB) and as negative controls, those that the
IDA-AMPS system would not be able to detect (those related
to colorless cells outside of the density range of our system,
WBC, PLT).

True blood parameters, as measured by a hematology ana-
lyzer, are compared with predicted parameters determined by
machine learning in Fig. 7 and Fig. S2–S14.† Fig. 7B shows a
Bland–Altman plot for comparing predicted and true %
hypo. % hypo showed the best correlation with a Pearson's r
of 0.94 while the other blood cell indices showed a lower corre-
lation (Table 2). As a comparison, other point-of-care tests
used to measure HGB (some commercially available) have
been found to have r = 0.85–0.96.55–57 A Pearson's r of 1.00
would represent perfect correlation between the machine
learning predictions and the values measured by the hematol-
ogy analyzer. The ability of a machine learning algorithm to
predict any variable in a regression problem is related to the
total size of the data set. While the number of patients tested
here are substantial for a prototype POC device, the predictive

ability of the algorithm could likely be improved by increasing
the size of the data set.

One risk of machine learning is over-fitting. To guard
against this we evaluated the tests performance for negative

Table 1 Area under the curve (AUC) and 95% confidence interval (CI) results for diagnosing hypochromia, micro/hypo anemia, and IDA using visual and
digital analysis of the IDA-AMPS system after 2 minutes centrifugation

Population

Visual Digital

Hypochromia Micro/hypo anemia IDA Hypochromia Micro/hypo anemia IDA

AUC (CI) AUC (CI) AUC (CI) AUC (CI) AUC (CI) AUC (CI)

General (n = 152) 0.98 (0.96–1.00) 0.89 (0.83–0.94) 0.88 (0.81–0.94) 0.98 0.93 0.90
M (n = 78) 0.95 (0.90–1.00) 0.87 (0.79–0.96) 0.80 (0.70–0.91) 0.97 0.91 0.86
F (n = 74) 1.00 (0.99–1.00) 0.91 (0.82–0.99) 0.91 (0.83–0.99) 0.99 0.95 0.95
Age ≥ 15 years (n = 47) 0.98 (0.94–1.00) 0.97 (0.91–1.00) 0.97 (0.91–1.00) 1.00 1.00 1.00
Age ≥ 5 years, < 15 years (n = 40) 0.95 (0.86–1.00) 0.92 (0.82–1.00) 0.88 (0.76–1.00) 0.95 0.91 0.91
Age < 5 years (n = 65) 0.97 (0.93–1.00) 0.83 (0.72–0.93) 0.82 (0.70–0.93) 0.98 0.86 0.86

Fig. 7 A. Machine learning prediction results for % hypo (predicted %
hypo) compared to a hematology analyzer (true % hypo) and B. Bland–
Altman plot showing good agreement between true and predicted %
hypo (n = 152). In both cases repeated random sub-sampling validation
(n = 500) was used to guard against over-fitting.
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controls that should not correlate to images being evaluated
(WBC and PLT) and found, as expected, a very low correlation
(r < 0.2). Owing to the density of the current test, the algo-
rithm is also unable to predict % macro or % hyper; an AMPS
with increased density of the phases might instead be used
to identify macrocytosis.

Conclusions

Using aqueous multiphase systems (AMPS), we have created
a simple and low-cost method to detect microcytic and hypo-
chromic red blood cells, and hence, IDA. After two minutes
in a centrifuge that can be powered by battery, the AMPS test
can be evaluated, by eye, and used to diagnose IDA with an
AUC of 0.88. Using a desktop scanner to image the tests, we
evaluate the images of the IDA-AMPS tests and use standard
machine learning protocols to diagnose IDA (AUC = 0.90)—a
computer aided diagnosis may be desirable for a fielded de-
vice in order to reduce possible user variability. The perfor-
mance of the IDA-AMPS test is comparable to previous stud-
ies47 using reticulocyte hemoglobin concentration to
diagnose IDA (AUC = 0.91) and, therefore, may have a high
enough performance to find clinical use.

The WHO estimates that IDA is responsible for ∼270 000
deaths and 19.7 million disability-adjusted life years lost an-
nually.58 Simple interventions, such as oral iron supple-
ments, exist for treating IDA.59 Supplements, however, should
be used only when a diagnosis is available in order to avoid
possible side effects. These side effects include iron overload,
impaired growth in children, and increased risk of severe ill-
ness and death in malaria endemic areas. In developed coun-
tries, IDA is easily diagnosed in a central laboratory by a com-
plete blood count and measurement of serum ferritin
concentration. In LMICs, however, a lack of instrumentation,
trained personnel, and consistent electricity prohibits effec-
tive diagnosis. A rapid, low-cost, and simple to use platform
to diagnose IDA could find widespread use in LMICs.

To our knowledge, there are currently no direct methods
of measuring serum ferritin concentration at the POC. Sev-
eral methods for measuring hemoglobin—providing a diag-
nosis for anemia, but not necessarily iron deficiency anemia
—are available at the POC. These methods include: 1) the
cyanmethemoglobin method using a photoelectric colorime-
ter,60 2) spectrophotometrically using the azidemethoglobin
method (e.g., the HemoCue system),61 3) colorimetrically
(both by eye and a smartphone app) using a redox reaction,57

4) paper-based devices,62 5) the hematocrit estimate
method,63 and 6) the WHO Hemoglobin Color Scale.64 Since
IDA is a nutritional disorder, molecular diagnostics are not
useful for diagnosis, except for a rare hereditary form of IDA
called “iron refractory IDA”.65

The IDA-AMPS test is able to detect microcytic and hypo-
chromic RBCs and diagnose IDA with an AUC comparable to
other metrics that have found clinical use, suggesting that it
could find widespread use as a screening tool for IDA. In par-
ticular, because the equipment needed to run the test is por-
table,28 we expect this method to find use in rural clinics
where large fractions of the population at risk for IDA, such
as children and pregnant women, seek care in LMICs. Ulti-
mately, the performance of this test must be validated in
such settings to demonstrate feasibility of using and inter-
preting the assay.

Using machine learning analysis of digital images, we
demonstrate an algorithm that is as good as visual interpreta-
tion at identifying IDA; the algorithm determined by the ma-
chine learning can be readily implemented into a smartph-
one application (app). Mobile health—or mHealth, the
general term given to portable technologies used to diagnose
disease that can transmit data over mobile phone networks—
is becoming increasingly widespread in Sub-Saharan Af-
rica.66,67 By integrating algorithms determined by machine
learning into a smartphone app—eliminating the need for vi-
sual interpretation and potential bias from users—our test
might be used by minimally trained healthcare workers in
LMICs. Interestingly, this test may also find use in veterinary
medicine. IDA in livestock, especially pigs, is increasingly
common due to modern rearing facilities that eliminate the
animals' exposure to iron-containing soil; IDA in pigs can
cause weight loss, retarded growth, and an increased suscep-
tibility to infection.68

A simple method to perform a complete blood count with-
out the need to draw large volumes of blood and send that
sample to a central laboratory—so called, point-of-care hema-
tology—has been a major goal of the diagnostic community
for several decades. We use machine learning to analyze im-
ages of IDA-AMPS tests to predict several red blood cell indi-
ces, a first step towards POC hematology. We find, in the best
case, a Pearson's r of 0.94 for predicting the number of hypo-
chromic RBCs (% hypo). HemoCue, the most widely used
portable test used to measure hemoglobin concentration, in
comparison, has been shown to correlate nearly perfectly
with a hematology analyzer (Pearson's r = 0.99) when oper-
ated by trained laboratory staff. When the device was used by

Table 2 Pearson product-moment correlation coefficient (Pearson's r)
for several important blood indices demonstrating the predictive ability of
the machine learning algorithm using the IDA-AMPS test. A Pearson's r of
1.00 represents perfect positive correlation. As a comparison, other
point-of-care tests used to measure HGB (some commercially available)
have been found to have r = 0.85–0.96 (ref. 55–57)

Blood parameter Pearson's r

% hypo 0.94
MCHC 0.80
CH 0.80
HGB 0.78
HCT 0.76
MCH 0.73
RDW 0.71
HDW 0.68
% micro 0.65
% micro/hypo 0.63
RBC 0.60
% hyper 0.50
MCV 0.49
% macro 0.30
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clinical staff, however, the correlation was much poorer
(Pearson's r = 0.66).69 The lessons from this study suggest
that a POC hematology system needs to be designed to be as
simple as possible to operate.

The IDA-AMPS test is a new approach to diagnosing IDA
and, using machine learning algorithms, to predict red blood
cell indices. Instead of directly measuring a biological marker
such as concentration of hemoglobin or serum ferritin, our
method relies on observing the way in which red blood cells
move through a viscous media (a function of their density as
well as size and shape) to make a diagnosis. In the future,
this approach may be applied to other diseases or biological
applications.
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