J. Park, M.S. Kodaimati, L. Belding, S.E. Root, G.C. Schatz, and G. M. Whitesides. 2022. “
Controlled Hysteresis of Conductance in Molecular Tunneling Junctions.” ACS Nano, 16, Pp. 4206-4216.
PDF
Supplemental1343
J. Park, M.S. Kodaimati, L. Belding, S.E. Root, G.C. Schatz, and G. M. Whitesides. 2022. “
Controlled Hysteresis of Conductance in Molecular Tunneling Junctions.” ACS Nano, 16, Pp. 4206-4216.
PDF
Supplemental1343
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
S.E. Root, V. Sanchez, J.A. Tracz, D.J. Preston, Y.S. Zvi, K. Wang, C. J. Walsh, and G. M. Whitesides. 2022. “
An Expanding Foam-Fabric Orthopaedic Cast.” Advanced Materials Tech., Pp. 1-12.
PDF1344
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “
Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19.
PDF1341
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “
Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19.
PDF1341
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “
Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19.
PDF1341
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “
Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19.
PDF1341
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “
An Outlook on Microfluidics: The Promise and The Challenge.” Lab on a Chip, 22, Pp. 530-536.
PDF1338
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “
An Outlook on Microfluidics: The Promise and The Challenge.” Lab on a Chip, 22, Pp. 530-536.
PDF1338
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “
An Outlook on Microfluidics: The Promise and The Challenge.” Lab on a Chip, 22, Pp. 530-536.
PDF1338