Publications

2022
R. Gao, M.S. Kodaimati, K.M. Handy, S.E. Root, and G. M. Whitesides. 2022. “Generating Oscillatory Behavior by Applyng a Magnetic Field During Electrocatalytic Oxidation of Glycerol.” J. Phys. Chem. C, 126, Pp. 18159-18169. PDF
1349
R. Gao, M.S. Kodaimati, K.M. Handy, S.E. Root, and G. M. Whitesides. 2022. “Generating Oscillatory Behavior by Applyng a Magnetic Field During Electrocatalytic Oxidation of Glycerol.” J. Phys. Chem. C, 126, Pp. 18159-18169. PDF
1349
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19. PDF
1341
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19. PDF
1341
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19. PDF
1341
M.S. Kodaimati, R. Gao, S.E. Root, and G. M. Whitesides. 2022. “Magnetic fields enhance mass transport during electrocatalytic reduction of CO2.” Chem Catalysis, 2, Pp. 1-19. PDF
1341
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “Nonlinear Phenomena in Microfluidics.” Chem. Rev. PDF
1342
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “Nonlinear Phenomena in Microfluidics.” Chem. Rev. PDF
1342
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “Nonlinear Phenomena in Microfluidics.” Chem. Rev. PDF
1342
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “An Outlook on Microfluidics: The Promise and The Challenge.” Lab on a Chip, 22, Pp. 530-536. PDF
1338
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “An Outlook on Microfluidics: The Promise and The Challenge.” Lab on a Chip, 22, Pp. 530-536. PDF
1338
S. Battat, D. A. Weitz, and G. M. Whitesides. 2022. “An Outlook on Microfluidics: The Promise and The Challenge.” Lab on a Chip, 22, Pp. 530-536. PDF
1338
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347
C.J. Decker, H.J. Jiang, M.P. Nemitz, S.E. Root, A. Rajappan, J.T. Alvarez, J.A. Traz, L. Wille, D.J. Preston, and G. M. Whitesides. 2022. “Programmable Soft Valves for Digital and Analog Control.” PNAS, 119, 40, Pp. 1-10. PDF Supplemental
1347

Pages