Formation of Two-Component Surfaces by the Spontaneous Assembly of Monolayers on Gold from Solutions Containing Mixtures of Organic Thiols

Colin D. Bain* and George M. Whitesides

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138

Received April 29, 1988. Revised Manuscript Received July 5, 1988

The formation of ordered, oriented, organic monolayer films by adsorption of long-chain thiols, HS(CH$_2$)$_n$X, onto gold provides a means of controlling the chemistry and structure of surfaces on an angstrom scale. Monolayers formed from a single thiol present a densely packed array of a single functional group at the interface between the monolayer and a liquid or vapor. A controlled degree of disorder can be introduced at this interface by coadsorbing thiols of different chain lengths, with the same or different terminal functionality. Here we demonstrate the synthesis of surfaces comprising a mixture of organic functional groups by the coadsorption of thiols with the same chain length but with different tail groups, X. The ability to control the composition of highly structured, multicomponent interfaces has particular potential for examining the interactions between organic functional groups in quasi-two-dimensional systems.

We have studied three simple, binary systems, HS(CH$_2$)$_n$CH$_3$ and HS(CH$_2$)$_n$Z (Z = -CO$_2$H, -CH$_2$OH, -CH$_2$Br), chosen to have one polar and one nonpolar component. These pairs were selected for ease of analysis by contact angle and by X-ray photoelectron spectroscopy (XPS). Monolayers were prepared by immersing evaporated gold films, supported on silicon wafers, in solutions of thiols in deoxygenated ethanol overnight at room temperature. The ratio of the two components was varied while maintaining a total concentration of thiol of 1 mM. The compositions of the monolayers were determined from the normalized areas of the O(I s) and Br(3p) peaks in XPS. Carbonyl acids, alcohols, and alkyl bromides coordinate only weakly to gold and do not form monolayers that are stable to washing with ethanol. Consequently, the tail groups do not compete with the thiol in binding to the gold.

Figure 1 (lower) plots the mole fraction in the monolayer, X_{surface}, of the polar component, HS(CH$_2$)$_n$Z, as a function of its mole fraction in solution. In general the compositions of the solution and of the monolayer are not equal: the relationship between X_{surface} and X_{solution} depends on the nature of the tail group. Since the intermolecular interactions within a monolayer are often similar to those in a crystal, solubility provides a useful guide to which component will be adsorbed preferentially. X_{surface} and X_{solution} are not always related, however, by the simple equilibrium expression expected for an ideal two-dimensional solution; specific interactions within the monolayer clearly play a role in determining the composition.

Figure 1 (upper) shows the advancing contact angles, θ_a, of water and hexadecane as a function of surface composition for the three systems studied. The contact angles vary smoothly with surface composition between the values characteristic of the pure, one-component monolayers. Cassie has shown that if the two components of the surface act independently, then cos θ_a is a linear function of the composition of the surface, in the absence of hysteresis. Cassie’s law appears to hold for the contact angles of hexadecane on all three pairs over the limited range we could observe and for water on the brominated surfaces, for which dispersion forces are the principal intermolecular interaction. The composition of the monolayer appears to be controlled largely by thermodynamics: frequently the minor component in solution is the major component in the monolayer. For longer chains the role of kinetics appears to increase.

The principle of these studies is generalizable to mixtures of two polar or two nonpolar tail groups or to systems with more than two components. We also measured the intensity of the Au(4f)$_{7/2}$ peak as a check on the focus of the spectrometer. The area of the bromine peak collected on the pure HS(CH$_2$)$_n$Br was corrected by 6% for an abnormally low gold intensity.

(8) Reference 4 contains experimental details.
(9) Reference 4 contains experimental details.
contact angles of water on surfaces containing hydroxyl or carboxylic acid groups, in which specific polar interactions are important, deviate strongly from linearity. The apparent hydrophilicity of the polar tail groups is higher when they are in a nonpolar environment composed largely of methyl groups than when their neighbors are other polar groups. This difference may arise partly from greater electrostatic stabilization in more polar surfaces and partly from intramonomolayer hydrogen bonding in surfaces that are rich in hydroxyl or carboxylic acid groups.

We believe that the polymethylene chains in these two-component monolayers are well-packed (in contrast to monolayers assembled from two thiols of different chain lengths), but we have no evidence for any translational order in the tail groups. These monolayers do not phase segregate into macroscopic domains: the resulting nonpolar islands would pin the advancing drop edge and give rise to a deviation from linearity in the contact angles opposite to that observed. In addition, changes in the line width and position of the O(1s) peak in XPS suggest that the local environment of dilute hydroxyl groups is different from that in a pure monolayer.

In conclusion, coadsorption on gold of mixtures of thiols, with the same chain length but different tail groups, produces well-packed monolayers exposing those groups at the surface. Specific interactions between the tail groups cause nonideal behavior both in the composition and the hydrophilicity of the monolayers.

Acknowledgment. The XPS (SSX-100, Surface Science Instruments) was provided by a DARPA/URI grant and housed in the Harvard University Materials Research Laboratory. We thank J. Evall, Dr. E. B. Troughton, and Dr. R. G. Nuzzo (AT&T Bell Laboratories) for useful discussions.

(13) In addition, highly dipolar tail groups might exhibit orientational disorder if an ordered array engendered a large unfavorable electrostatic interaction.

(14) The size below which islands of different polarity no longer cause hysteresis in the contact angle is not well-established experimentally. Neumann and Good have proposed theoretically that this lower limit is ~0.1 μm (Neumann, A. W.; Good, R. J. J. Colloid Interface Sci. 1972, 38, 341–358).

(15) The O(1s) peak of the hydroxyl group in the monolayer with X_{surface} = 0.05 was 0.3 eV narrower and shifted 0.4 eV to higher binding energy compared to the pure hydroxyl-terminated monolayer. One possible explanation is that very dilute hydroxyl groups are not hydrogen-bonded. The extent to which the molecular distribution in the monolayer deviates from a statistical mixture is unclear.