Synthesis and Conformational Study of Water-Soluble, Rigid, Rod-like Oligopiperidines

Vincent Semetey, Demetri Moustakas and George M. Whitesides*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138

*Corresponding Author

Telephone number: (617)-495-9430
Fax number: (617)-495-9857
Email Address: gwhitesides@gmwgroup.harvard.edu

General Methods. All chemicals were purchased from Aldrich (St. Louis, MO). Fmoc-4-piperidone was supplied by NeoMPS (Strasbourg, France). Analytical HPLC was run on a Varian instrument with a C18 column $5 \mu \mathrm{~m}(4.6 \times 250 \mathrm{~mm})$ from Vydac using a linear gradient of water with 0.1% TFA (A) followed by acetonitrile containing 0.08% TFA (B), at a flow rate of $1.2 \mathrm{~mL} / \mathrm{min}$ (UV detection at 214 and 254 nm). NMR experiments were carried out on a Varian Inova 500 MHz . Analysis of 2D NMR data was performed using Varian VNMR 6.1B software. IR spectra were obtained using a Nicolet Nexus E.S.P. 670 FT-IR. Mass spectra were performed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF) on a Perseptive Biosystems Voyager-DE PRO using α-cyano-4hydroxycinnamic acid as a matrix.

1-(benzyloxycarbonyl)-4-piperidinone (2). N-(benzyloxycarbonyloxy)-succinimide $(3.9 \mathrm{~g}, 15.7 \mathrm{mmol})$ in dioxane $(50 \mathrm{~mL})$ was added with stirring to an aqueous solution containing 4-piperidone monohydrate hydrochloride $(3.6 \mathrm{~g}, 23.5 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.3 \mathrm{~g}$, $31.3 \mathrm{mmol})$. The reaction was allow to proceed with stirring for 2 h at room temperature. The solution was evaporated and the product separated between ethyl acetate and water. The
organic phase was washed with water ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield $2(3.3 \mathrm{~g}, 14.1 \mathrm{mmol}, 90 \%)$. HPLC $t_{\mathrm{R}} 13.82 \mathrm{~min}$ (linear gradient, $\left.0-100 \% \mathrm{~B}, 20 \mathrm{~min}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H})$, 7.39-7.50 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 40.42,41.43,42.75,67.45,127.79$, 127.94, 128.17, 128.51, 128.56, 136.90, 155.58; HRMS m/z found $234.1130(\mathrm{M}+\mathrm{H})^{+}$, calcd 234.1130.
N-[(benzyloxy)carbonyl]-4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-piperidine (4). To a stirred solution of 1-(benzyloxycarbonyl)-4-piperidinone $\mathbf{2}$ ($10 \mathrm{~g}, 42.9 \mathrm{mmol}$) and 1,4-dioxa-8-aza-spiro[4.5]decane $\mathbf{3}(5.5 \mathrm{~mL}, 42.9 \mathrm{mmol}$) in 1,2-dicloroethane (50 mL) at room temperature was added sodium triacetoxyborohydride ($12.7 \mathrm{~g}, 60 \mathrm{mmol}$). The resulting solution was stirred at room temperature and was taken up in $0.1 \mathrm{~N} \mathrm{NaOH}(100 \mathrm{~mL})$, washed with water, dried over MgSO_{4} and evaporated. The residue was chromatographed $\left(\mathrm{SiO}_{2}: \mathrm{AcOEt} \rightarrow 10 \% \mathrm{MeOH}\right.$ in AcOEt$)$ to yield $4(8.7 \mathrm{~g}, 24.1 \mathrm{mmol}, 56 \%)$ as a white solid. HPLC $t_{\mathrm{R}} 12.22 \mathrm{~min}$ (linear gradient, $0-100 \% \mathrm{~B}, 20 \mathrm{~min}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.38$ (qd, $J=3.9 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.85(\mathrm{br} \mathrm{d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.52$ (tt, $J=11.7 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.64(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ; 3.93(\mathrm{~s}, 4 \mathrm{H}) ; 4.19$ (br d, $J=13.7 \mathrm{~Hz}, 2 \mathrm{H}) ; 5.10(\mathrm{~s}, 2 \mathrm{H}) ; 7.28-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 34.53,43.44,43.46,46.83,61.48,64.06,67.10,106.77,127.73,127.95,128.39,136.99$, 155.57; HRMS m/z found $361.2122(\mathrm{M}+\mathrm{H})^{+}$, calcd 361.2127.

4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-piperidine (5). The compound 4 ($2.4 \mathrm{~g}, 6.7$ $\mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(240 \mathrm{mg})$ were combined in ethanol $(20 \mathrm{~mL})$. This mixture was hydrogenated at room temp for 2 h . The mixture was then filtered through Celite, the filter cake was washed with $2 \times 10 \mathrm{~mL}$ of ethanol and the resulting solution was evaporated to yield $5(1.5 \mathrm{~g}, 4.9 \mathrm{mmol}, 98 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.58(\mathrm{qd}, J=2.9 \mathrm{~Hz}, J=11.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.95(\mathrm{br} \mathrm{d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{tt}, J=11.2 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}$,

1H), 2.65-2.73 (m, 2H), $2.70(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.24(\mathrm{br} \mathrm{d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 27.30,34.57,44.71,46.74,60.66,64.10,106.82 ;$ HRMS m / z found $227.1765(\mathrm{M}+\mathrm{H})^{+}$, calcd 227.1759.
N-[(benzyloxy)carbonyl]-4-Oxo-[1,4']bipiperidine (6). The compound 4 (480 mg , $1.33 \mathrm{mmol})$ was treated with concentrated hydrochloric acid $(14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. After $25 \mathrm{~min}, 50 \mathrm{~mL}$ of dichloromethane are added to the mixture at $0{ }^{\circ} \mathrm{C}$, followed by aqueous $\mathrm{NaOH}(7 \mathrm{~g})$ solution $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated. The residue was chromatographed $\left(\mathrm{SiO}_{2}: \mathrm{AcOEt} \rightarrow 10 \% \mathrm{MeOH}\right.$ in AcOEt$)$ to yield $6(304 \mathrm{mg}, 0.96 \mathrm{mmol}, 72 \%)$ as a solid. HPLC $t_{\mathrm{R}} 11.46 \mathrm{~min}$ (linear gradient, $0-100 \% \mathrm{~B}, 20 \mathrm{~min}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 1.35-154 (m, 2H), 1.74-1.82 (m, 2H), 1.84-194 (m, 2H); $2.43(\mathrm{~m}, 2 \mathrm{H}) ; 2.54(\mathrm{~m}, 3 \mathrm{H}) ; 2.85(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}) ; 2.82(\mathrm{~m}, 2 \mathrm{H}) ; 4.16-4.27(\mathrm{~m}, 2 \mathrm{H}) ; 5.12(\mathrm{~s}, 2 \mathrm{H}) ; 7.26-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 34.99,41.05,43.48,46.21,48.69,60.88,61.58,67.12,127.78,128.03$, 128.48, 137.09, 155.53, 209.80; HRMS m/z found $317.1865(\mathrm{M}+\mathrm{H})^{+}$, calcd 317.1865.

N-[(benzyloxy)carbonyl]-4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-

[1,4'; $\left.\mathbf{1}^{\prime}, \mathbf{4}^{\prime \prime}\right]$ terpiperidine (7). To a stirred solution of $\mathbf{5}$ ($138 \mathrm{mg}, 0.61 \mathrm{mmol}$) and $\mathbf{6}(193 \mathrm{mg}$, $0.61 \mathrm{mmol})$ in 1,2-dichloroethane $(15 \mathrm{~mL})$ at room temperature was added sodium triacetoxyborohydride ($181 \mathrm{mg}, 0.83 \mathrm{mmol}$). The resulting solution was stirred at room temperature and was taken up in $0.1 \mathrm{~N} \mathrm{NaOH}(30 \mathrm{~mL})$, washed with water, dried over MgSO_{4} and evaporated. The residue was chromatographed $\left(\mathrm{SiO}_{2}: \mathrm{AcOEt} \rightarrow 20 \% \mathrm{MeOH}\right.$ in AcOEt$)$ to yield $7(225 \mathrm{mg}, 0.43 \mathrm{mmol}, 70 \%)$ as a white solid. HPLC $t_{\mathrm{R}} 11.18 \mathrm{~min}$ (linear gradient, 0 $100 \% B, 20 \mathrm{~min}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.38(\mathrm{qd}, J=3.9 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.53(\mathrm{qd}, J=2.9 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{qd}, J=3.4 \mathrm{~Hz}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 4 \mathrm{H}), 1.88(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.19(\mathrm{t}, J=11.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.25(\mathrm{tt}, J=11.7 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}) ; 2.32(\mathrm{tt}, J=11.7 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.46(\mathrm{tt}, J=11.5 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=$
$4.99 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.02(\mathrm{br} \mathrm{d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{br} \mathrm{d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ ($\mathrm{s}, 4 \mathrm{H}$) , 4.19 (br d, $J=12.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.10(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.41(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.38,137.05,128.69,128.18,128.07,107.67,67.25,64.40,62.53,62.48,61.99$, 49.23, 47.10, 43.86, 35.48, 28.54; HRMS m/z found $527.3589(\mathrm{M}+\mathrm{H})^{+}$, calcd 527.3597.
 1-(benzyloxycarbonyl)-4-piperidinone $2(1.17 \mathrm{~g}, 5 \mathrm{mmol}$) and 4-methylpiperidine ($592 \mathrm{mg}, 5$ $\mathrm{mmol})$ in 1,2-dicloroethane $(15 \mathrm{~mL})$ at room temperature was added sodium triacetoxyborohydride ($1.48 \mathrm{~g}, 7 \mathrm{mmol}$). The resulting solution was stirred at room temperature and was taken up in $0.1 \mathrm{~N} \mathrm{NaOH}(30 \mathrm{~mL})$, washed with water, dried over MgSO_{4} and evaporated. The residue was chromatographed $\left(\mathrm{SiO}_{2}: \mathrm{AcOEt} \rightarrow 10 \% \mathrm{MeOH}\right.$ in AcOEt$)$ to yield $\mathbf{S} \mathbf{1}(807 \mathrm{mg}, 2.56 \mathrm{mmol}, 51 \%)$ as an oil. HPLC $t_{\mathrm{R}} 12.90 \mathrm{~min}$ (linear gradient, $0-100 \%$ $B, 20 \mathrm{~min})$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{qd}, J=12.2 \mathrm{~Hz}, J$ $=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{qd}, J=12.2 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{brd}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{br} \mathrm{d}$, $J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{td}, J=12.2 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{tt}, J=11.7 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.13(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.40$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 20.68,23.06,30.10,32.89,43.13,49.33,62.55$, 67.20, 127.79, 128.02, 128.43, 136.95, 155.49; HRMS m/z found $317.2225(\mathrm{M}+\mathrm{H})^{+}$, calcd 317.2229.

4-Methyl-[1,4']bipiperidine (S2). The compound S1 ($350 \mathrm{mg}, 1.11 \mathrm{mmol}$) and 10% $\mathrm{Pd} / \mathrm{C}(35 \mathrm{mg})$ were combined in ethanol $(10 \mathrm{~mL})$. This mixture was hydrogenated at room temp for 2 h . The mixture was then filtered through Celite, the filter cake was washed with 2 x 10 mL ethanol and the resulting solution was evaporated to yield $\mathbf{S 2}(130 \mathrm{mg}, 0.73 \mathrm{mmol}$, $64 \%)$ as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.97(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{qd}, J=$
$12.2 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.71(\mathrm{qd}, J=12.7 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{tt}, J=11.7, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{tt}, J=11.2$ $\mathrm{Hz}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{td}, J=12.7, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{brd}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{brd}$, $J=12.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 20.45,24.45,29.53,32.24,43.21,49.44$, 60.26; HRMS m/z found $183.1870(\mathrm{M}+\mathrm{H})^{+}$, calcd 183.1861.

General procedure for solid phase synthesis. The oligopiperidine was synthesized in Fmoc-tBu chemistry by the stepwise solid-phase methodology. Assembly of the protected peptide chains was carried out on a $25 \mu \mathrm{~mol}$ scale starting from Fmoc- β Ala-Wang resin. The Fmoc group was removed using 20% piperidine in DMF $(1 \times 5 \mathrm{~min}, 1 \times 15 \mathrm{~min})$ under nitrogen bubbling. The resin was then filtered and washed with DMF ($6 \times 3 \mathrm{~min}$). For each coupling step, a solution of the Fmoc-amino acid (10 equiv) and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (10 equiv) in 1,2-dichloroethane were added successively to the resin, and suspension was mixed for 60 min. A double coupling was performed systematically. After each coupling step, the resin was washed with $\mathrm{MeOH}(4 \times 3 \mathrm{~min})$ and $\mathrm{DMF}(4 \times 3 \mathrm{~min})$. After the removal of the last coupling step, the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ether and dried under nitrogen. Cleavage of the oligopiperidines from the resin were performed by treatment with a mixture of trifluoroacetic acid 95% and water 5%. After precipitation in cold diethyl ether and centrifugation, the oligopiperidines were solubilized and lyophilized. The crude oligomers derivative were finally purified by RP-HPLC (linear gradient, $0-80 \% \mathrm{~B}, 40 \mathrm{~min}$) and lyophilized.

Fmoc-(Pip) $\mathbf{4}_{\mathbf{-}} \mathbf{\beta A l a} \mathbf{- O H}(\mathbf{1 1})$. Overall yield after RP-HPLC purification and lyophilisation : 18\%; HPLC $t_{\mathrm{R}} 12.99 \mathrm{~min}$ (linear gradient, $0-100 \% \mathrm{~B}, 20 \mathrm{~min}$); HRMS m/z found $672.4125(\mathrm{M}+\mathrm{H})^{+}$, calcd 672.4125 .

Fmoc-(Pip) $\mathbf{6}_{\mathbf{6}} \mathbf{- \beta A l a - O H}$ (12). Overall yield after RP-HPLC purification and lyophilisation : 12%; HPLC $t_{\mathrm{R}} 12.94 \mathrm{~min}$ (linear gradient, $0-100 \% \mathrm{~B}, 20 \mathrm{~min}$); HRMS m/z found $838.5598(\mathrm{M}+\mathrm{H})^{+}$, calcd 838.5595.

Fmoc-(Pip) $\mathbf{x}_{\mathbf{8}} \mathbf{\beta A l a - O H}$ (13). Overall yield after RP-HPLC purification and lyophilisation : 10%; HPLC $t_{\mathrm{R}} 12.81 \mathrm{~min}$ (linear gradient, $0-100 \%$ B, 20 min); HRMS m/z found $1004.7059(\mathrm{M}+\mathrm{H})^{+}$, calcd 1004.7065

Fmoc-(Pip) $\mathbf{1 0}_{\mathbf{0}} \mathbf{- \beta A l a - O H}$ (14). Overall yield after RP-HPLC purification and lyophilisation : 4%; HPLC $t_{\mathrm{R}} 12.78 \mathrm{~min}$ (linear gradient, $0-100 \% \mathrm{~B}, 20 \mathrm{~min}$); HRMS m/z found $1170.8536(\mathrm{M}+\mathrm{H})^{+}$, calcd 1170.8535 .

Molecular dynamics. The oligopiperidine structure 7 was obtained from a crystal structure (Figure 2), and used as the starting point for simulations. The AMBER 8 package was used for these simulations. In order to prepare the molecule for simulation, the ANTECHAMBER program from the AMBER package was used to assign GAFF (General AMBER Force Field) atom and bond types and force field parameters to all atoms, bonds and torsions in the molecule. The ANTECHAMBER program was also used to calculate and assign AM1-BCC partial charges to all atoms. Molecular dynamics simulations used the SANDER program with the GB/SA (Generalized Born) implicit solvent approximation. The PTRAJ program was used to extract several geometric values from each snapshot in the molecular dynamics trajectories. In order to determine how linear the molecule's geometry remained during each simulation, two metrics were used. The first is the length of the major axis, defined as the distance between two carbon atoms at the opposite ends of the molecule (Figure 9), which was measured for each snapshot in each MD trajectory. The second is the major axis angle, formed by the previously defined major axis carbon atoms, and a central nitrogen atom in the molecule (Figure 9). These two values characterize the overall geometry
of the molecule during the simulations, describing its tolerance for stretching, compressing and bending.

The distribution of the major axis lengths for all three temperature simulations are shown in the histograms in Figure 10. The distribution of the major axis bending angles for all three temperature simulations are shown in Figure 11, and the distribution statistics are shown in Table 1.

Crystallographic data. Crystallographic data were collected using a Bruker SMART CCD (charge coupled device) based diffractometer equipped with an Oxford Cryostream lowtemperature apparatus operating at 193 K . A suitable crystal was chosen and mounted on a glass fiber using grease. Data were measured using omega scans of 0.3° per frame for 30 seconds, such that a hemisphere was collected. A total of 1271 frames were collected with a maximum resolution of $0.76 \AA$. The first 50 frames were recollected at the end of data collection to monitor for decay. Cell parameters were retrieved using SMART ${ }^{1}$ software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software ${ }^{2}$ which corrects for Lp and decay. The structures are solved by the direct method using the SHELXS-97 ${ }^{3}$ program and refined by least squares method on F^{2},

SHELXL-97, ${ }^{4}$ incorporated in SHELXTL-PC V 5.10. ${ }^{5}$ The structure was solved in the space group Pbca (\# 61) by analysis of systematic absences. All non-hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model. The crystal showed evidence that it may be twinned. All aspects of this were evaluated and in our hands we could not find two appropriate twin matixes, and therefore left in the original cell and refined, but limited the data to 40 degrees 2 theta. Expansion to the complete data gives R1 value $\sim 11 \%$. The crystal used for the diffraction study showed no decomposition during data collection. Drawing are done at 50\% ellipsoids.

Acknowledgement. The CCD based x-ray diffractometer at Harvard University was purchased through NIH grant (1S10RR11937-01).

References

1. SMART V 5.050 (NT) Software for the CCD Detector System; Bruker Analytical Xray Systems, Madison, WI (1998).
2. SAINT V 5.01 (NT) Software for the CCD Detector System Bruker Analytical X-ray Systems, Madison, WI (1998).
3. Sheldrick, G. M. SHELXS-90, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1990.
4. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.
5. SHELXTL 5.10 (PC-Version), Program library for Structure Solution and Molecular Graphics; Bruker Analytical X-ray Systems, Madison, WI (1998).
${ }^{\text {a }}$ Obtained with graphite monochromated $\operatorname{Mo} \operatorname{K} \alpha(\lambda=0.71073 \AA)$ radiation. ${ }^{\mathrm{b}} R 1=\sum| | F_{\mathrm{o}} \mid-$ $\left|F_{\mathrm{c}}\right||/ \Sigma| F_{\mathrm{o}} \mid .{ }^{\mathrm{c}} w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left\{\sum\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}\right.\right.$.

Supplemental Figure 1. Synthesis of 4-methylpiperidinopiperidine S2

(a) $\mathrm{NaBH}(\mathrm{OAc})_{3}, 1,2$-dichloroethane; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$

Supplemental Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra of N-methylpiperidinopiperidine $\mathbf{S} \mathbf{2}$ (a) in $\mathrm{CD}_{3} \mathrm{OD}(2 \mathrm{mM})$ (b) in $\mathrm{D}_{2} \mathrm{O}$.

Supplemental Figure 3. 500 MHz NOESY of N-methylpiperidinopiperidine $\mathbf{S 2}$ in $\mathrm{CD}_{3} \mathrm{OD}$ (2 $\mathrm{mM})$.

Supplemental Figure 4. 1D NMR spectrum of tetrapiperidine 7 (a) in $\mathrm{CD}_{3} \mathrm{OD}$ (b) in $\mathrm{D}_{2} \mathrm{O}+4 \%(\mathrm{v} / \mathrm{v}) \mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{D}$.

Supplemental Figure 5. Temperature-dependent NMR spectra of tetrapiperidine 7 in $\mathrm{CD}_{3} \mathrm{OD}$.

Supplemental Figure 6. 500 MHz COSY of tetrapiperidine 7 in $\mathrm{CD}_{3} \mathrm{OD}$.

Supplemental Figure 7. 500 MHz NOESY of tetrapiperidine 7 in $\mathrm{CD}_{3} \mathrm{OD}$.

Supplemental Figure 8. IR analysis of tetrapiperidine 7.

IR : Bohlmann band

Supplemental Figure 9. Metrics used for simulations. The major axis length of the oligopiperidine structure (top).The major axis angle of the oligopiperidine structure (bottom).

Supplemental Figure 10. Distribution of major axis lengths in simulations at $300 \mathrm{~K}, 350 \mathrm{~K}$ and 400 K .

Supplemental Figure 11. Distribution of major axis angles in simulations at $300 \mathrm{~K}, 350 \mathrm{~K}$ and 400 K .

Distributions of Major Axis Angles in MD Simulations at 300K, 350K \& 400K

Supplemental Table 1. Statistics of the major axis angle distributions

	Mean (degrees)	Std. Dev.
$\mathbf{3 0 0 K}$	162	9
$\mathbf{3 5 0 K}$	147	16
$\mathbf{4 0 0 K}$	147	16

