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Coding/Decoding and Reversibility
of Droplet Trains in
Microfluidic Networks
Michael J. Fuerstman,1 Piotr Garstecki,2* George M. Whitesides1*

Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device
in which a channel splits into two branches that reconnect downstream. The droplets choose a
path based on the number of droplets that occupy each branch. The interaction among droplets in
the channels results in complex sequences of path selection. The linearity of the flow through
the microchannels, however, ensures that the behavior of the system can be reversed. This
reversibility makes it possible to encrypt and decrypt signals coded in the intervals between
droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to
navigate a network in a precise manner without the use of valves, switches, or other means of
external control.

The use of microfluidic devices provides a
means to study both nonlinear (periodic
and chaotic) and reversible behaviors of

flows of fluids, although no microfluidic system
has simultaneously demonstrated both of these
classes of dynamics. At low Reynolds number
(Re), the behavior of fluids typically can be
reversed—as if the system were going backward
in time—by reversing the direction of the forces
applied to the system. Recent work has detailed
microfluidic systems, which demonstrate non-
linear behaviors such as periodic or chaotic
dynamics, that are either inherently irreversible
or have not been demonstrated to be reversible
(1–3). Here, we describe a microfluidic device
that displays reversible nonlinear dynamics. In
this system, droplets of water-based ink moving
in hexadecane arrive at a T intersection, where
they select one of two paths that form a loop by
reconnecting downstream. The binary choices
that the droplets make cause the resistance to
flow through each branch to evolve in time in a
nonlinear fashion: that is, the droplets in each
branch influence the choice of subsequent drop-
lets between branches by modifying the rates of

flow of liquid through the channels. This be-
havior results in nonlinear dynamics—droplets
select paths with controllable periodicity, and in
some instances they choose paths in an aperiodic
fashion—whereas the characteristically linear
flow of both liquids through the microchannels
allows the dynamics to be reversible. We believe
that this system can serve as a platform for
studying the transition in nonlinear systems from
reversible to irreversible dynamics. The revers-
ible, nonlinear dynamics that the device dem-
onstrates are also useful for “lab-on-a-chip”
applications—systems that perform physical,
chemical, or biological functions on millimeter-
to centimeter-scale platforms. For example, we
used the device to process a signal represented by
sequences of droplets—by encoding and then
decoding it—using only the pressure-driven flow
of liquids.

Flows at the small length scales (10 to 100 mm)
that are characteristic of microfluidic systems
typically occur at low Re and thus are dominated
by viscosity; inertia plays only a marginal role
(4). Viscosity-dominated flows are governed by
equations ofmotion that are linear in the velocity
of the fluid. Classic experiments by Taylor (5)
demonstrated how low-Re flows can be re-
versed. A drop of dye added to a viscous fluid
between two cylinders was stretched by rotating
the inner one and subsequently reconstituted by
reversing the direction of rotation. Recently,
Pine et al. have investigated a similar system in

which colloidal particles in the bulk fluid took
the place of the dye in Taylor’s experiments (6).
They demonstrated that the reversibility of the
dynamics of the system depended critically on
the number of nonlinear events, that is, col-
lisions between particles, that took place during
rotation. In both of these systems and in ours,
the motion of the carrier fluid can be approxi-
mately described by the reversible Stokes equa-
tion (7).

Microfluidic systems have recently been used
to generate multiphase flows where the fluids
include suspended droplets (8–10) and bubbles
(11–13) with substantial control over their size,
volume fraction in the carrier fluid, and frequen-
cy of production (14, 15). The interfacial stresses
present in these multiphase systems introduce
nonlinearities into the equations of flow, even at
low values of Re. These nonlinearities are weak,
however, compared with the linear contribution
to the dynamics (16), and therefore do not affect
the reversibility of the movement of bubbles or
droplets through a microchannel.

We intentionally introduce an additional,
strongly nonlinear component into the interac-
tions that govern the motion of droplets; Fig. 1A
shows the device we use. The nonlinearity arises
from the binary choice that the droplets make
at the T intersection. Each droplet that enters
this intersection chooses the branch of the loop
through which the hexadecane flows more
rapidly—equivalently, the path characterized by
the smaller fluidic resistance (17). Because the
system operates at a capillary number (<10−1)
that is small enough that the droplets remain
intact as they move through the T intersection
(18), the process of choosing a path amplifies the
differences in the rates of flow of hexadecane
through the branches of the loop into a binary
value; a droplet of aqueous solution is either
present in or absent from a branch.

When a droplet moves through a branch of
the loop, it increases the resistance to flow in that
channel. The droplet consequently decreases the
rate of flow of hexadecane through the branch it
occupies and increases (at a constant rate of flow)
the rate of flow through the other branch (19–21).
Because the next droplet to enter the T intersec-
tion also enters the channel through which the
hexadecane flows more rapidly, the choice that
one droplet makes influences the choice of the
next droplet arriving at the junction. This feed-
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back between successive droplets results in a
nonlinear system that exhibits bifurcations and
irregular, aperiodic behavior. The nonlinearity in
the operation of the system derives from two
sources: (i) the time evolution of the fluidic

resistances of the two arms of the loop and (ii) the
nonlinear transformation of the intervals between
droplets entering the loop and those between
droplets leaving it. Remarkably, as a result of the
precise confinement of the source of the non-

linearity to isolated events, this strongly nonlinear
device demonstrates reversibility, a characteristic
typical of, but not limited to, linear systems.

The basic microfluidic system we use com-
prises a droplet generator, a section in which a
channel branches into a loop and then reconnects,
and fluidic resistors (long sections of channel,
either folded into a serpentine geometry for
compactness or wound into a spiral). Figure 1A
sketches the general form of the network. Pres-
sure applied to a reservoir of hexadecane that
contains 3% by mass Span 80, a nonionic sur-
factant, and a reservoir of an aqueous solution of
ink or dye, creates droplets at constant intervals
of time at a T junction. The droplets then move
through a fluidic resistor, which damps the
changes in pressure at the T junction caused by
droplets navigating through the loop and ensures
that the bubbles are produced at a constant
frequency. After the resistor, the droplets reach
a loop that has asymmetric branches: in the
system shown in Fig. 1B, the longer branch is
1.98 mm long and the shorter 1.78 mm. Finally,
the droplets travel through another fluidic resis-
tor and out of the system.

We monitored the times at which droplets
enter and exit the loop at the positions marked in
Fig. 1B using a high-speed charge-coupled-
device camera. The behavior of the system de-
pends on the intervals of time that separate the
droplets as they arrive at the entrance to the
loop. For sufficiently large intervals between
drops (t > 1.04 s), only one droplet passes
through the loop at a time. As the intervals be-
tween droplets decreases to 0.90 s, a droplet ar-
rives at the junction while the previous one still
occupies the shorter branch. The increase in the
fluidic resistance of the shorter branch due to the
presence of the droplet is sufficient to divert
every second droplet into the longer branch.
Because the rates of flow through each of the
branches differ, the intervals between droplets
exiting the loops repeat in sequences of a longer
interval followed by a shorter one (Fig. 1C); we
refer to this regime as “period-2”. For 0.90 > t >
1.04 s, the system exhibits period-3 and period-4
behavior.

As we decrease the intervals between droplets
entering the loop, the system displays a series of
bifurcations to higher-order periodic and aperi-
odic behaviors. To characterize the periodicities,
we construct Poincaré maps, which are plots of
the time interval between the nth and n + 1st
droplet versus the time interval between the nth
and n – 1st droplet (Fig. 2A). The two plots on
the left (a and c) correspond to the intervals
between droplets before they reach the loop for
two different values of the mean interval between
droplets (0.679 and 0.591 s for sets i and ii). The
right-hand plot (b) in set i depicts the system
demonstrating period-3 behavior; the 33 points
on this plot fall into three clusters. The right-hand
plot in set ii (d) shows the system behaving in an
aperiodic manner; the 42 intervals measured do
not cluster on the Poincaré map.

Fig. 1. The microfluidic
device. (A) A generalized
schematic diagram of the
microchannel network.
Hexadecane containing
a surfactant (3% Span-
80 by mass) squeezed off
droplets of aqueous ink
or dye in the T junction.
The droplets proceeded
to the loop, where they
took one of the two paths.
(B) An optical micrograph
of the loop showing one
droplet in the lower branch
and one droplet in the
outlet channel. (C) Plots
showing the intervals be-
tween droplets as they
moved through the In
and Out windows marked
in (B). A spike indicates
the presence of a drop-
let. The upper plot shows uniform time intervals (Tin,1 and Tin,2) between droplets as they reached the
loop. The lower plot depicts the two different time intervals (Tout,1 and Tout,2) that separated droplets as
they emerged from the loop when the system operated in period-2 mode.

Fig. 2. Periodic and aperiodic
behavior. (A) Poincaré maps of the
system shown in Fig. 1 in (i) period-
3 mode and (ii) an aperiodic mode.
The maps plot the n + 1st interval
(Tn+1) versus the nth interval (Tn);
the intervals are normalized by the
mean of the intervals in each set of
data (<T>). The left-hand maps (a
and c) show one cluster and indicate
that the intervals between drops
were uniform as they reached the
loop. The number of clusters in map
b reveals the trimodal periodicity of
the system. Map d shows no discern-
able clustering and thus denotes
aperiodic behavior. The numbers
next to the clusters in plots a to c
denote the number of data points in
each cluster, whereas the number in
plot d shows the number of data
points in the entire plot. (B) A bi-
furcation diagram for the system. As
the displacement (the height of the
ink) increased, the periodicity of the
system changed. The numbers above
the chart denote the periodicity
demonstrated for each range of the
height of the reservoir of ink. Gray
bars denote areas where the system
behaved aperiodically. The states of
the system as represented by Poin-
caré maps b and d are marked on
the bifurcation diagram.
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Figure 2B uses a bifurcation diagram to
summarize the periodicities we observe for the
one-loop system to the extent that our experimen-
tal setup allows us to probe.We fix the pressure of
the nitrogen applied to the reservoirs of hexa-
decane and ink and then raise the vial containing
the ink in steps of 250 mmusing amicropositioner.
Raising this vial increases the pressure applied to
the ink due to gravity, increases its rate of flow, and
thus decreases the intervals between droplets
entering the loop. The resulting periodicities of
the paths selected by the droplets change as we
vary the pressure applied to the ink. We observe
period-1, -2, -3, -4 and -5 behavior, as well as
regimes where the droplets select branches
aperiodically. The observation of a bifurcation
cascade is typical of many nonlinear systems.

To determine whether the dynamics of the
system are reversible, we prepare a system con-
taining one loop followed by a spiraling outlet
channel ~9.5 cm long (22) in which we store the
sequence of droplets that exit the loop. We set
the pressure applied to the hexadecane and the
aqueous solution of dye so that the device
operates in period-7 mode for a sufficiently long
period of time that the spiral channel fills with
droplets in a period-7 configuration. We then
reverse the direction of flow through the system
by toggling two three-way valves. The valves
switch the applied pressure from the hexadecane
supply to the outlet of the device (23).

Figure 3A shows a time-space diagram of
droplets traveling forward and backward through

the system. As the system initially evolves in time
(before the reversal of the direction of flow), the
droplets move from left to right in the channel (the
loop is positioned in the center of the plot, ac-
counting for the blank space).We plot the position
of each droplet within the channel versus time as
the system evolves. The bands on the left side of
the plot are evenly spaced, the uniform spacing
indicating that the droplets enter the left side of
the loop separated by constant intervals of time
(the standard deviation of the intervals is 1.2% of
the mean interval). The bands on the right side of
the time-space plot show that the droplets exit the
right side of the loop in intervals that repeat in
groups of seven. The Poincaré map on the right
in set i of Fig. 3B confirms that the system op-
erates in a period-7 mode while the continuous
liquid flows forward through the system. When
we reverse the direction of flow through the
channels, the droplets enter the right side of the
loop in period-7 mode and emerge from the left
side in a stream of uniform periodicity. The stan-
dard deviation of the intervals increases, how-
ever, to 7.5% of the mean time interval after we
reversed the direction of flow. The spiral was
large enough to hold ~10 periods of seven drop-
lets each. The system demonstrates reversibility
over five period-7 groups of droplets but fails to
reverse the period-7 behavior to period-1 behav-
ior for longer sequences. We believe that the
failure in the reversibility of the system after five
periods and the increase in the standard deviation
of the intervals are caused by the droplets moving

closer together as they are stored in the inner ring
of the spiral.

The reversibility of the dynamics of a system
depends on the insensitivity of those dynamics to
perturbations. The scatter in the right-hand
Poincaré map shown in Fig. 3C (ii) demon-
strates that the system is subjected to perturba-
tions upon reversal of the direction of flow of
hexadecane. Despite these perturbations, the
droplets still exit the loop in a period-1 fashion.
The dynamics therefore preserve the coherence
of the signal.

The device with one loop that we described
previously demonstrates reversibility upon re-
versal of the direction of flow. We found that
period-2 sequences, however, are reversible if the
droplets are sent forward through a second loop
identical to, and downstream of, the first one
(Fig. 4, A and B). This property of reversibility
without requiring a reversal of the direction of
flow is due to backward/forward symmetry. The
period-2 sequence ABABAB (where A denotes a
longer interval and B a shorter one) looks exactly
the same whether read in the forward or reverse
direction, with a B always following an A.

We use the two-loop device to encode and
decode a signal comprising the intervals of time
between droplets.We use the device in Fig. 4A to
process an analog signal and the device in Fig.
4B to process a digital one, although both devices
are capable of processing either type of signal. To
encode the analog signal, we modulate the pres-
sure applied to the reservoir of ink about the

Fig. 3. Reversing the behavior of the
system. (A) An optical micrograph of
droplets moving through the channel
on either side of the loop. We stretched
the width of the channel relative to its
length by a factor of nine, using Adobe
Photoshop, to make the droplets more
easily visible. The initial positions of
the droplets in the optical micrograph
correspond to the points at the top of
the plot in (B) to which dashed lines are
drawn. The loop is drawn schematically
and is not part of the optical micro-
graph. (B) A plot of the position of
droplets in the system as a function of
time. Each horizontal slice of this plot
represents a snapshot of the system.
The black areas signify the presence of
a droplet, and the white parts depict
the absence of droplets. The droplets
initially move from left to right; they

enter the loop with uniform separation and exit separated by a repeating sequence of seven intervals.
After the direction of flow of hexadecane through the system is reversed, the droplets move from right to
left. They enter the loop in period-7 mode and exit with uniform separation. The seven repeating intervals
are marked on the right-hand side of the plot. (C) Poincaré maps showing the periodicity of the train of
droplets (i) before reversal and (ii) after reversal. The maps in (i) plot the nth interval (Tn) versus the n +
1st interval (Tn+1), whereas the maps in (ii) plot the n + 1st versus the nth. In all maps, the intervals are
normalized by the mean of the intervals in each set of data (<T>).
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value corresponding to themidpoint of the region
characterized by period-2 behavior by adjusting
the height of the reservoir of ink between ±1 mm
using the micropositioner. Changing the height
of the ink in this manner allows for precise con-
trol of the pressure applied to the ink. Displacing
the reservoir upwards by 0.1 mm results in an
increase in pressure of only 0.002 pounds per
square inch (psi). The droplets that form while
we raise and lower the reservoir of ink are
separated by aperiodic intervals of time that
range from 0.68 s to 0.86 s. We recorded the
time that passes between consecutive droplets
moving through the regions marked as “input
signal,” “encoded signal,” and “decoded signal”
in Fig. 4A. The first loop encodes the droplets by
dramatically changing the sequence of intervals
of time between droplets (Fig. 4C). The intervals
of the encoded signal differ from the intervals of
the input signal by an average of 33.3%. The
second loop then decodes the signal (Fig. 4D).
The intervals of the decoded signal differ from
those that form the input signal by an average of
2.3%.

To encode a digital signal, we use an elec-
tronically controlled valve (23) to adjust the
pressure applied to the reservoir of ink. We set
the baseline for the code by applying 1.075 V
to the valve (which applies ~3.18 psi of pressure
to the reservoir of ink) and 3.26 psi of pressure to
the reservoir of hexadecane. The droplets then
reach the first loop separated by 0.263 ± 0.005 s.

To create a value of 1, we decrease the voltage
applied to the valve to 1.074 V to decrease the
pressure applied to the ink and increase the
intervals between droplets. To express a 0, we
conversely increase the voltage applied to the
valve to 1.076 V. Figure 4, E and F, shows the
input, encoded, and decoded signals for the bi-
nary number 100101, which corresponds to the
decimal number 37. Two bits in the input
signal—the first and last 1’s—do not appear in
the encoded signal in Fig. 4E. In these two
instances, two consecutive droplets (the intervals
between which formed the peak of the signals)
are separated by sufficiently long periods of time
that both droplets choose the same path through
the loop. Unexpectedly, the 1’s are restored to the
signal after the droplets pass through the second
loop, although the peaks appear one interval later
than in the input signal. This experiment demon-
strates that the system can faithfully decode a
nontrivially encoded signal.

Pine et al. recently studied the boundary
between reversibility and irreversibility in the
flow of a viscous suspension of colloidal par-
ticles. They showed that a critical number of
nonlinear collisions between the particles initiates
the transition to irreversibility. We used the
combination of nonlinear events—the selection
of paths by bubbles—and the linear nature of the
viscous flow of fluids through microchannels to
obtain complex behavior while preserving the
reversibility of the system. We used this revers-

ible, nonlinear system to encrypt and decrypt
information. The reversible dynamics of the
encoder/decoder described in Fig. 4 demon-
strate that uncontrolled perturbations do not
prevent the manipulation of data coded in
trains of droplets. The encoder/decoder is an
example of a microfluidic device that generates
complex control of trajectories of droplets (e.g.,
directing drops into predefined branches of
microfluidic networks) without using valves or
switches.
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Microfluidic Bubble Logic
Manu Prakash* and Neil Gershenfeld

We demonstrate universal computation in an all-fluidic two-phase microfluidic system.
Nonlinearity is introduced into an otherwise linear, reversible, low–Reynolds number flow via
bubble-to-bubble hydrodynamic interactions. A bubble traveling in a channel represents a
bit, providing us with the capability to simultaneously transport materials and perform logical
control operations. We demonstrate bubble logic AND/OR/NOT gates, a toggle flip-flop, a ripple
counter, timing restoration, a ring oscillator, and an electro–bubble modulator. These show the
nonlinearity, gain, bistability, synchronization, cascadability, feedback, and programmability
required for scalable universal computation. With increasing complexity in large-scale microfluidic
processors, bubble logic provides an on-chip process control mechanism integrating chemistry
and computation.

Microfluidic “lab-on-a-chip” devices,
where picoliters of fluids can be pre-
cisely manipulated inmicroscopic chan-

nels under controlled reaction conditions, have
revolutionized analytical chemistry and biosci-
ences. Recent advances in elastomeric pneumatic
microvalves (1) and large-scale integration (2)
have enabled complex process control for a wide
variety (3, 4) of applications in single-phase micro-
reactors. However, pneumatic elastomeric micro-
valves require external macroscopic solenoids
for their operation, and cascadability and feed-
back (where a signal acts on itself) are currently
lacking in microfluidic control architectures.

Several reaction chemistries have been im-
plemented in segmented-flow two-phase micro-
reactors, where individual nanoliter droplets
traveling inside microchannels are used as reac-
tion containers (5, 6). Dielectrophoretic (7) and
electrostatic (8) schemes have been proposed for
on-chip droplet management, but these require
external control of individual gates. Devices that
exploit the dynamics of droplets inside micro-
channels would make high-throughput screening
and combinatorial studies possible (9), but pas-
sive techniques (10, 11) have not provided con-
trol over individual droplets.

We demonstrate bubble logic that imple-
ments universal Boolean logic in physical fluid
dynamics. This provides a droplet-level, inter-
nal, inherently digital flow control mechanism

for microfluidic processors. A bubble traveling
in a microchannel can represent a bit of informa-
tion as well as carry a chemical payload, making
it possible to integrate chemistry with compu-
tation for process control. Bubble logic pre-
serves the information representation from input
to output; thus, devices can be cascaded, allow-
ing implementation of combinatorial and sequen-
tial Boolean logic. A bubble can be transported
to a desired location in a complex microfluidic
network via a series of logic gates corresponding
to an equivalent Boolean circuit.

Logic gates have been implemented chemi-
cally in chemical concentration waves in a
Belousov-Zhabotinsky reaction (12) and in
DNA (13). Purely hydrodynamic fluidic logic
(14) was used to build a trajectory controller, an
all-fluidic display, nondestructive memory, and a
simple computer (15). Because the high Reyn-
olds numbers required for inertial interactions
cannot be maintained in the microscopic geom-
etries needed for higher operating speeds and
increasing integration, fluids with non-Newtonian
polymer additives have been used to realize a
constant flow source and a bistable gate (16, 17).
Boolean logic in a single-phase Newtonian fluid
was implemented by changes in flow resistance
(18), but because its input and output representa-
tion were not the same, these devices could not
be cascaded. Bubble logic, based on hydro-
dynamic bubble-to-bubble interactions, is more
similar in bit representation to theoretical billiard
ball logic (19) based on the elastic collision of
particles, and to magnetic bubble memory (20)
relying on interactions of magnetic domains in
garnet films. These schemes all conserve infor-

mation, because during a logic operation a bit is
neither created nor destroyed.

The pressure-driven flow of bubbles in an
interconnected microfluidic network can be de-
scribedwith a simplified dynamic flow resistance
model (21). Single-phase flow resistance of a
channel at low Reynolds number can be ap-
proximated as Dp/Q º mL/h3w, where Dp/LQ is
defined as the hydraulic resistance per unit
length, m is the dynamic viscosity, and h and w
are the height andwidth of themicrochannel. The
pressure drop due to a long bubble flowing in a
channel, where the bubble radius in an un-
bounded fluid is greater than the channel width
and the continuous phase completely wets the
channel surface, is nonlinear and is proportional
to Dp º σ/w(3Ca2/3), where Ca is the capillary
number (Ca = mu/σ), u is the flow velocity of the
continuous phase, and σ is the surface tension
between liquid and gas phase (22, 23). For small
flow rates, this increased flow resistance is pri-
marily due to viscous dissipation in the thin film
of liquid surrounding the bubble. With the pres-
ence of surfactant molecules on the air-water in-
terface, viscous dissipation in the lubrication film
further increases as a result of the no-slip bound-
ary conditions at the interface. In this case, the
pressure drop across a finite-length bubble is also
linearly dependent on the bubble length until it
reaches a critical value, beyond which it is con-
stant (24). When a bubble traveling in a micro-
channel arrives at a bifurcation with low capillary
number (where the bubble does not split because
surface tension dominates the viscous stress), it
chooses the branch with highest instantaneous
flow (25, 26).

With an increased flow resistance due to the
presence of a bubble in a microchannel, flow
lines in surrounding interconnected channels can
be perturbed. The nonlinearity in such a system
arises from the introduction of interfacial force
terms from the boundary conditions due to the
presence of a free surface at the fluid interfaces
(27). These nonlinear time-dependent interac-
tions are the basis of our bubble logic gates. In the
implementation described here, we used water as
the liquid medium [with added surfactant 2%
(w/w) Tween 20 to stabilize the interfaces] and
nitrogen bubbles. Planar bubble logic devices
were fabricated in poly(dimethyl siloxane)
(PDMS) by single-layer soft lithography and
plasma bonding to Pyrex substrates.
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