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This paper describes a model of the motion of superparamagnetic beads in a microfluidic channel

under the influence of a weak magnetic field produced by an electric current passing through a

coplanar metal wire. The model based on the conventional expression for the magnetic force

experienced by a superparamagnetic bead (suspended in a biologically relevant medium) and the

parameters provided by the manufacturer failed to match the experimental data. To fit the data to

the model, it was necessary to modify the conventional expression for the force to account for the

non-zero initial magnetization of the beads, and to use the initial magnetization and the magnetic

susceptibility of the beads as adjustable parameters. The best-fit value of susceptibility deviated

significantly from the value provided by the manufacturer, but was in good agreement with the

value computed using the magnetization curves measured independently for the beads from the

same vial as those used in the experiment. The results of this study will be useful to researchers

who need an accurate prediction of the behavior of superparamagnetic beads in aqueous

suspensions under the influence of weak magnetic fields. The derivation of the force on a magnetic

bead due to a magnetic field also identifies the correct treatment to use for this interaction, and

resolves discrepancies present throughout the literature.

Introduction

Superparamagnetic beads are important in a multitude of

biological and biomedical applications,1–4 including manipula-

tion5 and separation6–8 of cells, isolation of specific cells in

immunomagnetic assays,1,9 separations of proteins,10 and

application of mechanical forces to cells.11 Suspensions of

superparamagnetic beads in biocompatible aqueous buffers

are often used in conjunction with microfluidic and other types

of microfabricated devices.2,3 Macroscopic permanent mag-

nets and electromagnets can produce magnetic fields suffi-

ciently strong (.0.5 T) to saturate the magnetization of

superparamagnetic beads; under these circumstances, the

beads behave simply as permanent magnets. Microfabricated

electromagnets produce magnetic fields too weak (0–10 mT) to

saturate the magnetization of the beads (see Siegel et al.12 and

references therein). In this range of magnetic field strengths,

the magnetization of the beads is a complex, multi-valued

function of the applied magnetic field (see, for example, Fig. 1).

Eqn (1) is the relationship most often cited in the literature2

for the force acting on a magnetic particle inside a magnetic

field; here V is the volume of the particle (m3), Dx is the

difference in magnetic susceptibilities between the particle and

the surrounding medium (dimensionless), m0 = 4p 6 1027

(T m A21) is the permeability of vacuum, and ~BB is the applied

magnetic field (T).

~FF~
VDx
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~BB:+
� �

~BB (1)
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Fig. 1 Magnetic response of COMPELTM superparamagnetic beads

(nominal diameter 6 mm) in weak fields ranging from 23.5 to 3.5 mT

measured with a SQUID magnetometer at room temperature (300 K)

by the manufacturer (Bangs Laboratories, Inc.). The magnetization of

the beads saturates at 2.95 (A m2 kg21) in fields stronger than y0.5 T

(not shown). Following saturation, the beads possess remnant

magnetization Mr = 0.17 (A m2 kg21) at zero field. The magnetic

susceptibility of the beads, xbead= (0.170 ¡ 0.007), is calculated from

the slope of a line fitted to the initial (i) part of the magnetization curve

(0–2.5 mT); the spread represents the 95% confidence interval.
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Eqn (1) often appears in the literature without derivation or

reference to a derivation.2,13–18 The absence of an appropriate

derivation makes it difficult to decide whether and how this

formula should be used in a particular experiment.

This paper describes the correct way to compute the force

experienced by a superparamagnetic bead (suspended in a

biologically relevant medium) in an applied magnetic field that

is not strong enough to saturate the magnetization of the bead

(eqn (2)). In this equation, r is the density of the bead (kg m23),
~MM0 is the initial magnetization of the bead (A m2 kg21), and xbead

is the initial magnetic susceptibility of the bead (dimensionless)

obtained from the magnetization curve (Fig. 1) (we neglect the

magnetic susceptibility of the suspending medium).

~FF~rV+ ~MM0
:~BB

� �
z

Vxbead

m0

~BB:+
� �

~BB (2)

We use the two expressions for the force to model the

motion of superparamagnetic beads in a microfluidic channel

under the influence of a weak magnetic field produced by a

coplanar electromagnet.12 We demonstrate that a model based

on the conventional expression (given by eqn (1)) and the value

of the magnetic susceptibility of the beads obtained from the

magnetization curve provided by the manufacturer does not

match the experimental data. Using the initial magnetization

and the susceptibility of the beads as adjustable parameters, we

show that the model based on eqn (2) agrees well with the data.

We find that the best-fit value of the magnetic susceptibility of

the beads is nearly two times higher than the value provided by

the manufacturer, but is in good agreement with the result of

our own measurement of the magnetic response of the beads

performed on a sample of the beads from the same vial as

those used in the experiment.

Computation of the force acting on a

superparamagnetic bead

Superparamagnetic beads as ideal magnetic dipoles

The internal structure of superparamagnetic beads can be

very complex. Depending on the manufacturing procedure,

each bead may consist of an iron oxide (magnetite, Fe3O4)

particle with a functionalized coating,19 a sphere of polymer

matrix impregnated with iron oxide nanoparticles,20,21 or a

polymer sphere coated with iron oxide.22 Because of this

complexity, derivation of the magnetic moment of a bead

(~mmbead), and prediction of the dependence of the magnetic

moment on the applied magnetic field, from the bulk magnetic

properties of the constituent materials can both be difficult or

impossible. Fortunately, manufacturers of superparamagnetic

beads measure the dependence of the average mass magnetization

of the beads M ((emu g21) CGS, (A m2 kg21) SI units) on the

applied magnetic field, and generate empirical, so-called

magnetization curves; Fig. 1 shows an example of such a curve

for a sample of 6 mm beads (COMPEL, Bangs Laboratories, Inc.).

In this figure, the applied magnetic field is denoted H and is shown

in CGS units of Oersted (Oe) in accordance with the notation

accepted in technical literature. In eqn (1) and (2), the applied

magnetic field is denoted ~BB:m0
~HH and is expressed in the SI units

of Tesla (T).

In weak magnetic fields (B ; m0H ¡ 3 mT as in Fig. 1), the

magnetization of a superparamagnetic bead ~MM depends

approximately linearly on the applied magnetic field (eqn (3)),

where ~MM0 is the initial magnetization (A m2 kg21) and xbead is the

initial magnetic susceptibility of the bead (dimensionless).

~MM~~MM0z
xbead

r
~HH~~MM0z

xbead

r

~BB

m0

(3)

The initial magnetic susceptibility xbead is defined as the

slope of the initial (starting from the fully relaxed state) part of

the magnetization curve (i in Fig. 1) and is given by eqn (4)

(where the conversion of units is required if DM and DH are

expressed in the units of CGS). The susceptibility xbead

calculated this way is an average property—the magnetic

susceptibility of individual beads may vary significantly even

within the same lot.23 The empirical dependence of the

effective magnetic moment of an average individual bead

~mmbead (A m2) on the applied magnetic field is then given by eqn (5).

Eqn (5) should hold as long as the applied magnetic field in an

experiment remains within the same range and along the same

path around the hysteresis loop as that used in measuring the

magnetization curve.

xbead:r
DM

DH
kg m{3
� �

emu g{1
� �

Oe{1
� �

~
4p

103
r
DM

DH
(4)

~mmbead~rV ~MM~rV ~MM0z~MM ~BB
� �� �

~rV ~MM0z
xbead

rm0

~BB

� �
(5)

We note that because the bead can rotate freely in

suspension, ~MM0 is always parallel to the applied field ~HH so long

as the bead is spherical and its magnetic response is isotropic. We

also emphasize that the value of the initial magnetization of the

bead ~MM0 (i.e., the magnetization of the bead in the absence of the

applied magnetic field) depends on the history of prior

magnetization of the bead. In general, the value of ~MM0 for a

specific bead may be anything from zero to Mr (remnant

magnetization, see Fig. 1). The fact that the initial part of the

magnetization curve shown in Fig. 1 does not start from zero

(seemingly suggesting a non-zero magnetization of the sample at

zero applied field) is misleading. A sample of the beads for a

SQUID (superconducting quantum interference device) magnet-

ometer is usually prepared in the form of dry powder containing

tens of millions of beads in random orientations—the magnetiza-

tion of the sample at zero applied field must be zero even when the

initial magnetizations, ~MM0, of individual beads are not. The

apparent non-zero initial magnetization shown in Fig. 1 is likely

due to a slightly positive remnant field trapped in the super-

conducting magnet of the SQUID magnetometer.24–26

In the derivation of eqn (5) for the magnetic moment of the

bead, we have neglected the magnetic properties of the medium

in which the bead is suspended. How valid is this assumption?

The magnetic susceptibility of water is approximately 29 6
1026. The larger lanthanide salts possess some of the highest

molar magnetic susceptibilities known;27 for example,

Winkleman et al.28 showed that the magnetic susceptibility

of aqueous solutions of GdCl3 at concentrations compatible

with living mammalian cells (40 mM) is 1.4 6 1025. Because

these values are at least four orders of magnitude smaller than
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the susceptibility of the beads (xbead = (0.170 ¡ 0.007), Fig. 1),

we can safely neglect the effect of the magnetic properties of

suspending medium for a majority of biological and biome-

dical applications.29

The manufacturer obtains magnetization curves by measur-

ing the change in magnetization of a sample of the beads in

response to a specified range of applied magnetic fields (Fig. 1).

From these curves we obtain the effective dependence of ~MM, i.e.

the magnetic moment of the beads per unit mass, on the applied

field ~HH (or ~BB:m0
~HH as in eqn (1) and (2)); we do not consider the

total macroscopic field inside the bead ~BBtotal~m0
~HHzr~MM
� �

, as is

commonly done in the textbooks.30,31 Practically, ~MM vs. ~HH is

exactly what we need—in an experiment, we are likely to know the

applied field, ~HH, which we would generate by passing electric

current through a conductor of known geometry, and have no way

to measure the total field inside the bead.31

Because we now know explicitly how the magnetic moment

of a bead depends on the applied magnetic field (eqn (5)), we

can neglect the details of the complicated, heterogeneous

structure of the superparamagnetic bead, and treat the bead as

an ideal (point) magnetic dipole with the magnetic moment

equal to the effective magnetic moment of the bead ~mmbead. We

note that a rigorous derivation of the functional dependence of

~mmbead on the applied field would be difficult: one would have to

consider the magnetic properties of the heterogeneous mixture of

magnetic and non-magnetic materials comprising the bead (which

may be unknown) and the shape of the bead, and solve the

boundary value problem for the magnetic field vectors ~HH and
~BBtotal in the specific geometry of an experiment.32 We do not have

to perform this intractably complex calculation because we know

how the actual beads respond to the applied field exactly, thanks

to the empirical magnetization curve.

Calculation of the force

The magnetic force acting on a magnetic dipole, ~mm, in an

applied magnetic field, ~BB, is generally given by eqn (6).30–32 By

substituting the empirical expression for the magnetic moment

~mmbead of the superparamagnetic bead (eqn (5)) into eqn (6), we

obtain eqn (7) for the force acting on the bead.

~FF~ ~mm:+ð Þ~BB (6)

~FF~ ~mmbead
:+ð Þ~BB~rV ~MM0

:+
� �

~BBz
Vxbead

m0

~BB:+
� �

~BB (7)

If we neglect the effect of the magnetic properties of the

suspending medium and use xbead obtained from the magne-

tization curve (Fig. 1) as the magnetic susceptibility of the

bead, the conventional formula (eqn (1)) for the force acting

on a superparamagnetic bead in magnetic field becomes

eqn (8). (Note that because the conventional formula for the

force (eqn (1)) does not account for the demagnetization field

due to the shape of the particle,32 we must use xbead, not the

magnetic susceptibility of the material of the beads.)

~FF~
Vxbead

m0

~BB:+
� �

~BB (8)

Clearly, the conventional expression for the force

(eqn (8)) does not account for the initial magnetization of

superparamagnetic beads, ~MM0. The magnitude of the initial

magnetization (however small it may be in absolute terms) can be

comparable to the magnetization induced by a weak applied

magnetic field (see Fig. 1). It should, therefore, be taken into

account to describe the behavior of the beads realistically.

Model of an experiment

Description of the experiment

To test the accuracy of eqn (1) and (2), we used both

expressions to model the motion of superparamagnetic beads

in a microfluidic channel under the influence of a weak

magnetic field produced by an electric current passing through

a coplanar metal wire12 (Fig. 2). The coplanar fabrication of

the microfluidic channel and the metal wires embedded in

poly(dimethylsiloxane) (PDMS), as well as the particulars of

the experiment, have been described in detail elsewhere.12 We

loaded a suspension of superparamagnetic beads in phosphate-

buffered saline (PBS) buffer into the middle microchannel

using a syringe pump. When we stopped the flow, we observed

that the beads were distributed approximately uniformly

across the width of the channel (Fig. 2c). We passed electrical

current, I (A), through one of the co-fabricated electro-

magnets, adjacent to the microfluidic channel, and measured

the time (the capture time, tcap (s)) it took for approximately

90% of the beads to reach the sidewall of the microfluidic

channel closest to the active electromagnet (Fig. 2d). We

performed this experiment several times by turning on/off left

and right electromagnets sequentially to obtain multiple data

(tcap) for each value of the current.

Simplifications of the model

To model this experiment, we approximate the geometry of the

real problem (Fig. 2) by a simplified version shown in Fig. 3, in

which we represent the coplanar electromagnet by an infinitely

long, cylindrical, conductive wire carrying electrical current.

The electric current I (A) passing through an infinitely long,

cylindrical wire generates a magnetic field. Outside of the wire,

at a distance r (m) from its center, the magnitude of the

magnetic field B is given by eqn (9), and the direction of

the magnetic field vector ~BB is determined by the right-hand

rule (Fig. 3).33

B~
m0I

2pr
(9)

In the model, we neglect inertia and the effect of the walls of

the channel on the viscous drag experienced by a moving bead.

In addition, we neglect the magnetic properties of the

suspending medium, and assume that the initial magnetization

of the bead ~MM0 does not change during the course of the

experiment. Finally, we assume that the beads are distributed

uniformly across the width of the microfluidic channel in the

beginning of the experiment. For a uniform distribution of the

beads, measuring tcap is equivalent to measuring the time required

for a single bead to move from its initial position located 90% of

the channel width away from the sidewall closest to the active

electromagnet, a = 104 (mm), to its final position in contact with

said sidewall, b = 73 (mm) (note that all distances are calculated
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from the center of the active electromagnet and that the bead can

not approach the wall closer than its radius) (Fig. 2b, 3).

The balance of forces

Two forces act on a superparamagnetic bead in the micro-

channel—the magnetic force, ~FFm, due to the gradient of the

applied magnetic field, ~BB, produced by the electromagnet, and the

Stokes force, ~FFs, due to the viscous drag exerted by the suspending

medium on a moving bead (eqn (10)) (here ~aa is the acceleration

of the bead). The Stokes force is given by eqn (11), where g

(kg m21 s21) is the dynamic viscosity of the suspending medium,~vv

is the velocity of the superparamagnetic bead (m s21), and R is the

radius of the bead (m).34

rV~aa~~FFmz~FFs (10)

~FFs~{6pgR~vv (11)

Model based on eqn (1)

Using the expression for the magnetic field (eqn (9)) and some

basic geometrical considerations (Fig. 3), we find that the only

non-zero component of the magnetic force vector given by the

conventional formula (eqn (8)) is the x component, given by

eqn (12) (for details of the derivation please see the Appendix).

We neglect the inertia of the superparamagnetic bead in

eqn (10) for the balance of forces and, by substituting the

magnetic force (eqn (12)) and the force of viscous drag

(eqn (11)), we obtain eqn (13). We solve the differential eqn (13)

in a closed form to find tcap—the time it takes the average bead

to move from its initial position, a, to its final position, b, near

the sidewall of the channel closest to the electromagnet

(eqn (14)).

Fm~{
xbeadR3m0I2

3px3
(12)

dx

dt
~bx{3, where b~{

xbeadR2m0I2

18p2g
(13)

tcap~
1

4b
b4{a4
� �

(14)

Model based on eqn (2)

Using the same argument as for the model based on the

conventional formula for the force, we obtain the following

expression (eqn (15)) for the x component of the magnetic

force vector given by eqn (7) (see Appendix). We again neglect

inertia in the balance of forces (eqn (10)) and substitute

eqn (15) for the magnetic force and eqn (11) for the force of

Fig. 3 An idealized representation of the superparamagnetic bead in

the microfluidic channel with an adjacent metal wire (electromagnet).

The electromagnet is represented by an infinitely long, cylindrical wire

carrying electrical current.

Fig. 2 (a) Photographs of the device, comprising two metal (low

melting-point solder) wires co-fabricated astride a microfluidic channel

(all in a microsystem fabricated in PDMS), as viewed from above at

low magnification (left), high magnification (upper right) and in cross-

section (lower right). The cross-section was obtained by sectioning the

device with a razor blade along the dashed line in the upper right

image; the dark line in the left electromagnet is the result of imperfect

sectioning; the light areas at the bottom of the image are reflections of

the metal in the glass support. In the photograph at low magnification,

lines were drawn to outline the location of the microfluidic channel. (b)

A schematic diagram of the cross-section of the device (lower right in

panel (a)) showing the dimensions of key components of the device. (c)

The microfluidic channel is filled with a suspension of superparamag-

netic beads in a buffer; the beads are distributed uniformly across the

channel. (d) Electrical current I passing through the top solder wire

(electromagnet) produces magnetic field within the channel that

magnetizes and attracts the beads towards the electromagnet. Panels

(a), (c) and (d) are reproduced in part from Siegel et al.12 with

permission.
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viscous drag into the balance to obtain eqn (16). Finally, we

solve the differential eqn (16) in a closed form to find the

capture time tcap, which is given by eqn (17).

Fm~{
2rM0R3m0I

3x2
{

xbeadR3m0I2

3px3
(15)

dx

dt
~ax{2zbx{3, where a~{

rM0R2m0I

9pg

and b~{
xbeadR2m0I2

18p2g
(16)

tcap~
1

3a
b3{a3
� �

{
b

2a2
b2{a2
� �

z

b2

a3
b{að Þ{ b3

a4
ln

abzb

aazb

� �
(17)

Comparison of the two models with the experimental data

According to the certificate of analysis provided by the

manufacturer, the diameter of the beads is 2R = (5.91 ¡

0.16) (mm) and the density of the beads is r = 1089 (kg m23).

The dynamic viscosity of the suspending medium (PBS) is g =

1023 (kg m21 s21). We used the room temperature (300 K)

magnetization curve (Fig. 1) provided by the manufacturer

(Bangs Laboratories, Inc.) to calculate the magnetic suscept-

ibility of the beads xbead. To estimate the slope of the initial

part (i in Fig. 1) of the magnetization curve, we fitted the

points corresponding to the applied fields from 0 to 2.5 (mT)

with a line and found, after the appropriate conversion of units

(eqn (4)), that xbead = (0.170 ¡ 0.007) (the spread in the value

of the magnetic susceptibility represents the 95% confidence

interval).

We used these parameters to evaluate tcap as predicted by the

model (eqn (14)) based on the conventional expression for the

magnetic force acting on a superparamagnetic bead (eqn (1) or

(8))—the capture times predicted by the model fail to match

the experimental data (Fig. 4). The model (eqn (14)) over-

estimates the capture time by at least a factor of two—the

model predicts that the beads should move more slowly than

they actually do.

We treated the initial magnetization of the bead, M0, and

the susceptibility, xbead, as parameters and fitted the model

(eqn (17)) based on the modified expression for the force

(eqn (2) or (7)) to the experimental data, using the weighted

linear least squares method (data with larger variances were

assigned less weight). The best (in the weighted linear least

squares sense) estimates for the initial magnetization of the

beads and the susceptibility were M0 = 0.05 (A m2 kg21) and

xfit = 0.36 (Fig. 4, solid line, R2 = 0.9923). The contribution

from the non-zero initial magnetization is especially evident

for small currents (I , 0.2 A), where the best-fit model deviates

from a straight line to match the data (compare the shapes of

the solid and the dashed line in Fig. 4). Expectedly, the

estimated value of the initial magnetization of the beads M0 is

smaller than Mr = 0.17 (A m2 kg21)—the maximum possible

value of the initial magnetization according to the magnetiza-

tion curve (Fig. 1). The best-fit value of susceptibility (xfit =

0.36) is, however, about two times higher than the value of

susceptibility xbead = (0.170 ¡ 0.007) calculated from the

initial part of the magnetization curve provided by the

manufacturer (Fig. 1).

To obtain an independent (from the manufacturer) estimate

of the magnetic properties of the beads, we used a SQUID

magnetometer (MPMS XL-7, Quantum Design) for measuring

the magnetic response of a sample of the superparamagnetic

beads from the same vial as the beads we used in the

experiment (Fig. 5). We calculated the magnetic susceptibility

of the beads xbead = (0.33 ¡ 0.06) by fitting a line to the points

of the initial part (i in Fig. 5) of the magnetization curve

corresponding to the applied magnetic fields ranging from 0 to

2.5 mT. This value, xbead = (0.33 ¡ 0.06), is in good agreement

with the estimate of the best-fit value of magnetic susceptibility

provided by the model (xfit = 0.36). Similarly to the value of

susceptibility, the saturation magnetization (4.13 A m2 kg21)

and the remnant magnetization (Mr = 0.28 (A m2 kg21)) of

the beads are higher than the saturation magnetization

(2.95 A m2 kg21) and the remnant magnetization (Mr =

0.17 (A m2 kg21)) reported by the manufacturer.

One possible explanation of this discrepancy is the variabi-

lity of the manufacturing process. The magnetization curves

(such as the one shown in Fig. 1 or Fig. 5) are not routinely

measured for each lot of the superparamagnetic beads produced

and sold by the manufacturer, partially because the originally

intended application for these beads (separation of cells) does

not require precise knowledge of the magnetic properties of the

beads in weak magnetic fields. For cell separation, the

variability of the susceptibility of the beads between different

lots is not important, because the magnetic separations of cells

are usually carried out with the use of strong permanent

magnets that saturate the magnetization of the beads. In this

context, the possibility that the beads in some lots are ‘‘more

magnetic’’ than those in others is only an advantage.

Fig. 4 A comparison of the experimental data (from Siegel et al.12)

with the predictions of the model based on different versions of the

formula for the magnetic force acting on the superparamagnetic bead.

The error bars represent the range of the measured values. The dashed

line corresponds to the model given by eqn (14) based on the conven-

tional expression for the force; xbead = 0.17 as provided by the manu-

facturer. The solid line is the best fit (R2 = 0.9923) of the model given

by eqn (17) based on the modified expression for the magnetic force

(M0 = 0.05 (A m2 kg21), xbead = xfit = 0.36) to the experimental data.
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Conclusion

This paper modifies the conventional expression for the

magnetic force experienced by a superparamagnetic bead to

account for the non-zero initial magnetization of the bead. We

used the conventional and the modified expressions to model

the motion of superparamagnetic beads in a microfluidic

channel under the influence of a weak (ymT) magnetic field

produced by electric current passing through a coplanar metal

wire. By fitting the model based on the modified expression for

the force to the experimental data, we infer that the actual

parameters describing the magnetic properties of the beads

may deviate significantly from the values provided by the

manufacturer. To correct this discrepancy, independent

measurements of the magnetic response of the beads should

be performed on a sample from the same lot as the beads to be

used in an experiment. When a magnetometer is not available,

however, the simple microfluidic device described in this note

could provide the needed parameters.

The conventional expression for the magnetic force is

given in the literature without a derivation or a reference to

one,2,13–18 perhaps because it is considered to be a common

knowledge. The lack of an appropriate derivation, however,

makes it difficult to decide how this formula should be applied.

The conventional formula, for example, does not account for

the initial magnetization of the beads, which may contribute

significantly to the force in weak magnetic fields. The formula

also does not account for the shape of the beads—thus, the

effective susceptibility of the beads (not the bulk susceptibility

of the constituent materials) must be used. The indiscriminate

use of the conventional formula may lead to modeling errors

that could be easily avoided.

Manipulation of superparamagnetic beads in suspension under

the influence of weak magnetic fields produced by microfabri-

cated electromagnets is becoming increasingly popular in lab-on-

a-chip applications. The modified expression for the magnetic

force given in this note will help scientists with limited back-

ground in physics to predict the motion of the beads accurately.

Appendix

We use eqn (9) describing the magnetic field generated by the wire

(electromagnet) and the geometry of the problem to find the

magnetic force experienced by the superparamagnetic bead given

by the conventional eqn (8). Expanded into component form, eqn

(8) becomes eqn (18), where V~
4

3
pR3 is the volume of the bead.

~FFm~
Vxbead

m0

~BB:+
� �

~BB~
Vxbead

m0

Bx

LBx

Lx
zBy

LBx

Ly
zBz

LBx

Lz

Bx

LBy

Lx
zBy

LBy

Ly
zBz

LBy

Lz

Bx

LBz

Lx
zBy

LBz

Ly
zBz

LBz

Lz

0
BBBBBBB@

1
CCCCCCCA

(18)

To find the magnetic force (eqn (18)), we need to know

the components of the magnetic field~BB vector as well as the various

partial derivatives of the magnetic field, which appear in eqn (18).

Calculation of the partial derivatives

In the XY plane r = x, and the magnetic field ~BB in the

geometrical configuration defined in Fig. 3 is given by eqn (19).

~BB~

0

0

{
m0I

2px

0
BB@

1
CCA i:e: Bx~0, By~0, Bz~{

m0I

2px

	 

(19)

Because we assumed that the wire representing the electro-

magnet is infinitely long along the Y axis, the partial derivatives
L
Ly

of the components of the vector ~BB vanish (eqn (20)).

L~BB
Ly

~~00 [
LBx

Ly
~0,

LBy

Ly
~0,

LBz

Ly
~0

	 

(20)

Fig. 5 Magnetization curve for a sample of superparamagnetic beads

from the same vial as those used in the experiment (actual diameter

(5.91 ¡ 0.16) mm, density 1089 (kg m23), COMPEL, Bangs

Laboratories, Inc.). The curve was measured with a Quantum Design

MPMS XL-7 SQUID magnetometer at room temperature (300 K). (a)

Magnetic response of the beads in applied magnetic fields ranging from

21 to 1 T; the magnetization of the beads saturates at 4.13 (A m2 kg21).

(b) View of the magnetization curve for fields ranging from 23.5 to

3.5 mT; remnant magnetization is Mr = 0.28 (A m2 kg21). The magnetic

susceptibility of the beads xbead = (0.33 ¡ 0.06) is calculated from the

slope of a line fitted to the initial (i) part of the magnetization curve (0–

2.5 mT); the spread represents the 95% confidence interval.
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Because of the symmetry of the system, the partial

derivatives of the Y component of ~BB along the X and Z axes

vanish as well (eqn (21)).

LBy

Lx
~0,

LBy

Lz
~0

	 

(21)

To find the partial derivatives
L
Lz

of the components of the vector

~BB, let us imagine that the bead has shifted along the Z axis from z0 to

z1 (note that z0 . z1), while the X and Y coordinates of the bead

remainedfixed (Fig. 6).The magnetic fieldvectorat the originalposi-

tion of the bead ~BB0 is defined by eqn (19) with x = x0 (eqn (22)).

~BB0~

B0x

B0y

B0z

0
B@

1
CA~

0

0

{
m0I

2px0

0
BB@

1
CCA~

0

0

{ ~BB0

�� ��

0
B@

1
CA (22)

Using the symmetry of the problem, and the basic geometric

considerations depicted in Fig. 6, we find the following

expression for the components of magnetic field vector at the

new position of the bead ~BB1 shown in eqn (23).

~BB1~

B1x

B1y

B1z

0
B@

1
CA~

{ ~BB1

�� ��sin hð Þ
0

{ ~BB1

�� ��cos hð Þ

0
B@

1
CA (23)

By expanding the trigonometric functions into correspond-

ing Taylor series (eqn (24)) and by neglecting small values due

to third or higher-order terms for Dz = z0 2 z1 and h, we can

re-write eqn (23) as eqn (25).

cos hð Þ~1{
1

2
h2z

1

4!
h4z:::

sin hð Þ~h{
1

3!
h3z:::

h~arctan
Dz

x0

� �
~

Dz

x0
{

1

3

Dz

x0

� �3

z:::

(24)

B1x~{ ~BB1

�� ��sin hð Þ~{ ~BB1

�� ��h~{ ~BB1

�� ��Dz

x0

B1z~{ ~BB1

�� ��cos hð Þ~{ ~BB1

�� �� 1{
1

2
h2

� �
~

{ ~BB1

�� �� 1{
1

2

Dz

x0

� �2
 !

(25)

To find the magnitude of the magnetic field at the new

position of the bead ~BB1

�� ��, we substitute r~x0 1z Dz=x0ð Þ2
� �1

2

into eqn (9) and apply the Taylor series expansion to obtain

eqn (26), where ~BB0

�� ��~ m0I

2px0
is the magnitude of magnetic field at

the original position of the bead ~BB0 (Fig. 6).

~BB1

�� ��~ m0I

2pr
~

m0I

2px0

1z Dz=x0ð Þ2
� �{1

2

~ ~BB0

�� �� 1{
1

2

Dz

x0

� �2

z
3

8

Dz

x0

� �4

z:::

 ! (26)

We use eqn (26) and neglect third and higher-order

terms for Dz to express the X and Z components of the

vector ~BB1 (eqn (25)) through the magnitude of the field at

the original position of the bead ~BB0

�� �� and obtain

eqn (27).

B1x~{ ~BB1

�� ��Dz

x0
~{ ~BB0

�� �� 1{
1

2

Dz

x0

� �2
 !

Dz

x0
~{

~BB0

�� ��
x0

Dz

B1z~{ ~BB1

�� �� 1{
1

2

Dz
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� �2
 !

~

{ ~BB0

�� �� 1{
1

2

Dz

x0

� �2
 !

1{
1

2

Dz

x0

� �2
 !

~{ ~BB0

�� ��z ~BB0

�� �� Dz

x0

� �2

(27)

We can now compute the partial derivatives
L
Lz

of the

components of the vector ~BB as shown in eqn (28).

LBz

Lz
: lim

z1?z0

Bz z1ð Þ{Bz z0ð Þ
z1{z0

~ lim
z1?z0

B1z{B0z

z1{z0
~

lim
z1?z0

{ ~BB0

�� ��z ~BB0

�� �� Dz

x0

� �2

z ~BB0

�� ��

z1{z0

~

~ lim
z1?z0

~BB0

�� �� z0{z1
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z1{z0
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~BB0

�� �� z1{z0
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~
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�� ��
x2

0
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 !

~0

LBx
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Bx z1ð Þ{Bx z0ð Þ
z1{z0
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z1?z0

B1x{B0x

z1{z0
~
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{
~BB0

�� ��
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z1{z0
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z1?z0

{
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�� ��
x0
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z1{z0
~
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~ lim
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x0

 !
~
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0
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(28)

Fig. 6 A schematic illustration of the virtual experiment used to find

partial derivatives
L
Lz

of the applied magnetic field vector ~BB. In this

experiment, we imagine that the superparamagnetic bead has shifted

along the Z axis, while the X and Y coordinates of the bead remain fixed

(the Y axis is pointing at the reader out of the plane of the page and is not

shown). The magnetic field vector at the final position (x0, z1) of the bead

~BB x0,z1ð Þ:~BB1~ B1x,B1zð Þ is tilted by an angle of h radian relative to the

direction of the magnetic field vector in the original position of the bead

~BB x0,z0ð Þ:~BB0. Note that z0 . z1 and that~BB0 is anti-parallel to the Z axis.
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Because eqn (28) is true for any x0, we finally find the partial

derivatives (eqn (29)).

LBx

Lz
~

m0I

2px2
,

LBz

Lz
~0

	 

(29)

Computation of the force

After the substitution of eqn (19), (21) and (29) into eqn (18),

the conventional expression for the force becomes eqn (30).

~FFm~

{
xbeadR3m0I2

3px3

0

0

0
BB@

1
CCA (30)

The modified expression for the magnetic force given by

eqn (7), when expanded into the component form, becomes

eqn (31).
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zBy
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zBz
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Lz

0
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1
CCCCCCCCA

(31)

To evaluate eqn (31) we need to know the components of the

initial magnetization ~MM0. Because the bead can rotate freely in

suspension, the initial magnetization of the bead ~MM0 is parallel to

the applied magnetic field~BB (eq 32) (note that ~MM0 is anti-parallel to

the Z axis (Fig. 3)).

~MM0~

0

0

{M0

0
B@

1
CA i:e: M0x~0, M0y~0, M0z~{M0

� 

(32)

By substituting eqn (19), (21), (29), and (32) into eqn (31),

we obtain the following expression for the force (eqn (33)).

~FFm~

{
2rM0R3m0I

3x2
{

xbeadR3m0I2

3px3

0

0

0
BB@

1
CCA (33)

We see from eqns (30) and (33) that the only component

of the magnetic force vector that is not zero is the X

component. This means that a superparamagnetic bead

positioned in the XY plane would experience a force in the

direction along the X axis towards the Y axis. This answer is

intuitive—one would expect a superparamagnetic bead to

move towards a magnet.
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