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The influence of molecular symmetry on reaction rates is examined with an approach in
which reactions are viewed as electronic transitions- between states of reactants and products
(described. in turn, by quasiadiabatic potential surfaces). The molecular Hamltonian is used
to derive selection rules for these transitions. The complete Hamiltonian has no useful symmeiry.
Neglect of non-Born-Oppenheimer and spin-orbit terms (and of other angular momentum
coupling terms) leads to an approximate Hamiltonian and to selection rules which form the
basis for the Woodward-Hoffmann rules. This approach provides an alternative to the adiabatic
potential surfaces. reaction coordinates. and transition state theory used i more familiar
discussions of the Woodward-Hoffmann rules. Further, it provides a parucuiarly clear method
for discussing violations of these symmetry rules, and for differentiating concerted and noncon-

certed reactions.

1. Introduction

The prediction of chemical reaction rates and rate constants
is a difficult endeavor. Formal theories of reaction rates!!
are just beginning to be used successfully!?! (at times with
great computational expense) for the simplest three-atom
exchange reactions and are not presently applicable to more
complex problems. The difficulty in analyzing the motion
of many-atom systems can, however, be reduced substantially
by considerations of symmetry. In molecular quantum
mechanics, the classification of electron states of atoms and
molecules according to symmetry is fundamental to the con-
struction of correlation diagrams and optical selection rules.
By considering symmetry, these rules can be constructed and
applied without calculating details of the motion of the elec-
trons and nuclei. Similarly, “symmetry rules” such as those
proposed by Wigner and Witmer'®!, Shuler'®!, and Woodward
and Hoffmann®®), and discussed by many other authors'®),
have greatly clarified certain types of problems in kinetics,
without requiring elaborate calculation. The Woodward-Hoff-
mann (W-H) rules for the prediction of relative rates of con-
certed reactions are based on considerations of the symmetry
of the electronic wavefunctions of the chemical reactants and
products. These wave functions seldom figure explicitly in
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applications of the W-H rules: because electronic wavefunc-
tions caiculated in the Hiickel LCAO-MO approximation™
reflect molecular svmmetry in easily predictable ways. a knowl-
edge of the molecular symmetry of the substance(s) of interest,
and of the svmmetry properties of the Hiickel wavefunctions
derived previously for these or related materials. normally
is sufficient for an application of the W-H rules.

The Hiickel wavefunctions, on which the application of
the W-H rules usually depends. are calculated with an
approximate Hamiltonian: any influence of nuclear motion
on the ¢lectronic wavefunction is neglected (the Born-Oppen-
heimer approximation); angular momentum terms (molecular,
electronic spin-orbit, and nuclear and electronic spin) are
ignored: and electron-electron interactions are incorporated
semi-empirically. The enormous predictive success of the W-
H rules indicates that the neglected terms are normally unim-
portant for the success of qualitative arguments based on
orbital symmetry. Nonetheless, the complete molecular Hamil-
tonian does not have the symmetry required to provide a rigorous
busis for the W-H rules, and a more complete calculation,
including Born-Oppenheimer terms and consideration of
angular momentum may, in principle, lead to predictions
different from those of the W-H rules.

The purpose of this article is to discuss a number of aspects
of symmetry rules in chemical kinetics, particularly the W-H
rules. We present a theoretical framework with which we:
— derive symmetry rules and their limits of applicability
— provide operational definitions of the concepts of concerted

and nonconcerted reactions
— derive extensions of present symmetry rules.
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The utility of our analysis is tested for various applications.
Further, we show that symmetry rules for reactions can be
obtained as selection rules analogous to those used in optical
spectroscopy.

Our interest is in the influence of symmetry on reaction
rates and in the assumptions underlying the symmetry rules,
not in the detailed calculation of rates for specific reactions.
Recent work on photodissociation of polyatomic molecules'®!
and dynamics of simple rearrangement reactions!®! indicates,
however, that the types of methods discussed here can be
used to provide quantitative estimates of rates.

Our treatment of reaction rates clarifies the relationship
between the relatively high symmetries assumed in applying
these rules and the much lower symmetry actually characteris-
tic of the complete molecular Hamiltonian. Two other worth-
while features emerge from this development. First, it is pos-
sible to derive relatively compact expressions which give the
reaction rates in terms of the complete Hamiltonian (including
nuclear and non-Born-Oppenheimer terms) and appropriate
wave functions of reactants and products. This expression
can be separated into a part having the symmetry assumed
in the W-H rules (that is, the symmetry of the nuclear frame-
work), and other parts that do not have this symmetry. The
experimental observation that many reactions obey the W-H
rules then makes it possible to identify terms in this rate
expression that are normally not important in determining
reaction rates. Thus, the observation that certain features
of reaction rates are adequately described by terms having
symmetries characteristic of only a part of the complete molec-
ular Hamiitonian permits an estimation of the relative impor-
tance of the remaining parts in determining reaction rates.
Second, by identifying explicitly the terms in the Hamiltonian
that do not have the symmetry of the molecular framework,
it is possible to suggest areas and circumstances in which
the W-H rules might be expected to fail. Our discussion
proceeds in four stages:

First, we describe the distinction between “adiabatic” and
“quasiadiabatic” potential surfaces{'], and indicate the advan-
tages of the latter in discussing the role of symmetry in the

bi
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Fig. 1. A reaction in an adiabatic model (a) is represented by a smooth
progression of nuciear positions within a single electronic state. All interactions
present in the real physical system are, in principle, included in this representa-
tion. The highest energy species in this progression is called the transition
state or activated complex, and, within the usual activated complex theory,
is assumed to be in thermodynamic equilibrium with the ground state of
the reactants. Its decomposition to products is the result of molecular motion
along a vibrational coordinate having a negative force constant. A reaction
in a quasiadiabatic model (b) is treated as a transition between electronic
states of distinct species—“reactants” and “products”.

[*] In this context, adiabatic and quasiadiabatic should be considered as
arbitrary labels, with no obvious connection to the word adiabatic as used
in classical thermodynamics.
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reaction rates. Briefly, adiabatic potential surfaces are those
which organic chemists commonly use in discussing kinetics
(Fig. 1). A continuous surface connects reactants and products,
and the lowest energy path between the two is called the
“reaction coordinate™. The “activated complex™ or “transition
state” is considered as a discrete species at the position of
highest energy along that path. A complete adiabatic surface
is generated with a single electronic Hamiltonian: reactants,
products. and intermediates are represented by eigenfunctions
of this Hamiltonian calculated for different sets of nuclear
coordinates. A reaction is the result of the motion of nuclei:
since the adiabatic surface is continuous, reactants and prod-
ucts belong to the same electronic state. In the present work.
a distinct quasiadiabatic potential surface is required for reac-
tants and products;each is calculated using a procedure specifi-
cally designed to eliminate all of the interactions which provide
the driving force for reaction. The wave functions used to
represent these artificially non-reacting species are not eigen-
functions of the Hamiltonian for the complete system. A reac-
tion is considered as an electronic transition between the
quasiadiabatic surface (state) of the reactants and the quasi-
adiabatic surface of the product. The transition state may be
viewed as the nuclear configuration at or near the crossing
of these two surfaces. Although the quasiadiabatic picture
of a reaction is not the one customarily used in physical
organic chemistry, Evans'®’ proposed and made innovative
use of quasiadiabatic energy surfaces, as early as 1938, for
a discussion of the electronic theory of reactions.

Second, we state and develop an equation that describes
the rate of a concerted reaction in terms of the quasiadiabatic
wave functions for reactants and products, and the Hamil-
tonian of the reacting system. This equation permits the rate
to be expressed in terms of contributions from several well-
defined, although not necessarily easily calculated, quantities:
overlap integrals of electronic wave functions; overlap integrals
of nuclear wave functions; nuclear geometry at the intersection
of the two quasiadiabatic potential surfaces; non-Born-Oppen-
heimer terms; and spin-orbit terms. Those terms which must
be negligible for the reaction to follow orbital symmetry rules
of the W-H type are easily identified.

Third, we study various contributions to the rate expression
for reactions which are forbidden according to electronic sym-
metry rules of the W-H type. Examination of the vibronic
and spin-orbit contributions to the rate shows that these
also follow symmetry rules. These rules differ significantly
from the W-H rules, however, and are neither generally
nor easily applicable. These discussions are illustrated with
the example of the closure of butadiene to cyclobutene.

Fourth, we discuss the concepts of concerted and noncon-
certed reactions, and present useful (operational) definitions.

Our analysis emphasizes that many organic reactions classi-
fied according to the simplest electronic symmetry rules (W-H)
as allowed or forbidden can in fact be categorized according
to varying degrees of reactivity, and that reactions forbidden
by these simplest rules may at times proceed at significant
rates. Several representative reactions are classified in terms
of “orders of forbiddenness”. Identification of those terms
in the complete rate equation that are not taken into account
in the W-H treatment makes it possible to suggest reaction
types in which violations of orbital symmetry rules might
be expected.

Angew. Chem. Int. Ed. Engl. 18, 377~392 (1979)



2. Adiabatic and Quasiadiabatic Potential Surfaces

Most discussions of reaction kinetics based on transition
state theory presuppose a single. continuous, potential surface
connecting reactants and products. The points on this surface
are calculated by assuming the nuclei to be stationary (the
Born-Oppenheimer  approximation) and  solving the
Schrédinger equation (1) to obtain electronic energies and
wavefunctions for selected nuclear positions,

He(r.Ro)Di(r, Ro) = Ei(Ro) Di(r, Ro) (1)

Here. H. is the electronic Hamiltonian. r are the electronic
coordinates, R, arc the (fixed) nuclear coordinates. @;(r. Rg)
is the eigenfunction which describes a particular (i-th) elec-
tronic state (say the ground state, for thermal reactions) at
the chosen values of Ry. and E;(Ry) is the associated clectronic
cnergyl™). By varying the coordinates R, to correspond to
the forming and breaking of bonds hypothesized for the reac-
tion, we trace out a reaction coordinate. Many approximations
have been introduced to make this procedure practical in
the Hiickel approximation; in particular. a limited number
of atomic orbitals are used as the basis set. and two-electron
terms and certain integrals are ncglected.

For example, for the exchange of a hydrogen atom between
dihydrogen and a hydrogen atom

Ha—Hg+He > Hys+Hg—He

one can calculate the changes in energy accompanyving the
transfer of Hp from H4 to He by assuming a linear arrangement
of three nuclei, choosing one distance. and minimizing the
total energy of the system by varying the sccond distance.
The results of such a calculation are summarized in Figure
2a. It is. of course. not generally useful to consider potential
energies varying with a single distance for any purpose but
schematic illustration: we shall do so here since a qualitative
representation is all that is required. Surfaces generated in
this way by the solution of Eq. (1) for the particular chosen
system are called adiabatic. We emphasize that since a single
Hamiltonian is used to calculate the energics and wavefunc-
tions of nuclear configurations corresponding to what we
call the reactants, products. and intermediates between the
two, and since the resulting surface is continuous, all of these
species are normally in the same electronic state: that is.
they have the same electronic wave function.

a) b)ba”a “““ Hel o [HaHatc]
8

RAB RAB

Fig. 2. Schematie adiabatic (a) and guasiadiabatic (b) potential surfaces for
M4 -Hg+He > Ha+Hg He For all curves. the distance between 1, and
He. RycoisTixed and Ry is varied. In the left-hand curve for the quasiadiabatic
surfaces. no interaction is allowed between Hy and He at any value of
Rag: for the right-hand curve. no interaction between Hy and Hy is allowed.

[*] Of course. this term also contains the Coulomb energy of the nuclear
skeleton at rest.
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Alternative theoretical methods for studying reaction rates
are available. although they are not commonly used in physi-
cal-organic chemistry. The one cmployed throughout this
paper involves calculations of two distinct potential surfaces,
onc for reactants and one for products. Reaction is considered
to result from a transition between them. The procedure used
to construct these so-called quasiadiabatic potential surfaces
(and the corresponding clectronic states) is based on calculat-
ing energies and wavefunctions for systems in which certain
interactions actually present and crucial for the reaction to
occur are intentionally omitted. This procedure is thus not
based on finding electronic eigenfunctions for the chosen react-
ing system, and is thus very different in spirit from that used
for adiabatic surfaces! *!. Typically. for the reaction of Hy ~Hy
with He. the calculation of a quasiadiabatic surface for the
three-atom system that forms the reactants determines the
energy of that configuration with explicit exclusion of bonding
between Heand Hy  Hy. The calculation of the quasiadiabatic
surface of the products. that is the calculation for Hy+ Hy
He. 1s done with explicit exclusion of bonding between Hy
and Hy -He. The results of these calculations can be repre-
sented schematically by two intersecting potential encrgy
curves (Fig. 2). The electronic quasiadiabatic wave functions
arc not cigenfunctions of the Hamiltonian of the complete
system, because this Hamiltonian includes «/f the interactions
present in the system. The quasiadiabatic wave functions expli-
citly exclude all honding interactions between products and
reactants.

Both adiabatic and quasiadiabatic representations have
attractive features for describing chemical reactions. The
former 1s more readily appreciated physically. and scems con-
ceptually simple. Construction of an adiabatic energy surface
involves assuminga position for the nuclei and then caleulating
the total electronic energy of the system at this position.
This calculation is repeated for any nuclear positions that
are considered relevant to the problem being considered. The
resulting adiabatic energy surface thus (in principle) provides
the correct energy of the system as a function of the nuclear
positions. The continuous rearrangement of the nuclei from
reactant to product configurations traces a path on this surface.
The lowest energy path from reactants to products is frequently
called the “reaction coordinate™ The transition state is just
the point of highest encrgy along this coordinate. In the acti-
vated complex theory. which is formulated with the adiabatic
energy surface. the rate is determined by the curvature of
the surface (that is. by the force constants) at the saddle
point corresponding to the transition state. Adiabatic potential
surfaces have the appeal of being “physically measurable™,
in the sense that they give the correct energy for the best
approximation to this energy that can be calculated (with
the particular procedure used) for any assumed set of nuclear
positions. They have, however. a deficiency as the basis for
discussing the influence of symmetry.

The reason for this will become clear as we proceed. At
this point we only note that once the adiabatic energy surface
is calculated the electronic wave function is climinated from
the problem. If we want to compute the rate of reaction
numerically we have to solve the mechanical equations of
motion (classical or quantum) with the adiabatic energy surface
serving as potential energy. For instance. in Figure 3 we
give a simple one-dimensional representation of this point.
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where we show the adiabatic energy surface along the lowest
path from reactants to products (usually called reaction coor-
dinate). The total energy of the system is a constant and
hence a straight line. The difference between the two lines
is the kinetic energy of the nuclei, which changes as the reaction
proceeds. The potential energy allows us to compute the forces
exerted on the moving (reacting) nuclei. at any given nuclear
configuration. Nowhere is the electronic symmetry of reactants
and products obviously present in this type of treatment.

Total energy_of reacting system

Reactant

Product

Reaction coordinate

Fig. 3. Typical rcaction coordinate. The level of the total energy of the
reacting system. which is constant. is indicated by the horizontal line.

In the quasiadiabatic scheme the situation is conspicuously
different. The reaction is considered to be a transition from
the potential surface (i. ¢. the electronic state) of the reactants
to the potential surface (i. ¢. the electronic state) of the products.
We emphasize that the adiabatic and quasiadiabatic ways
of describing reactions are equivalent and the choice of one
of them depends on the problem to be solved. For a discussion
of electronic symmetry it is morc convenient to use a represen-
tation that displays the clectronic degrees of freedom. The
reader will discover. as he proceeds, that the language of
the symmetry rules is that of the quasiadiabatic representation.

The quasiadiabatic potential surfaces do not necessarily
give the correct energies. because the bonding interactions
that are responsible for conversion of reactants to products
are explicitly omitted in their calculation. For nuclear configur-
ations which can be identified clearly as “products™ or “reac-
tants”, quasiadiabatic potential surfaces give energies very
close to those of adiabatic surfaces: for intermediate configura-
tions. however. the two types or surfaces are very different.
Although the idea of a reaction as a transition between two
electronic states seems qualitatively more complex than that
of a smooth progression along a reaction coordinate, the
quasiadiabatic approach offers a great advantage for discus-
sions of the influence of symmetry on rate. The reaction is
considered as an electronic transition from a state of the
reactant to a state of the product, and it is possible to calculate
the rate using an expression of the form of Eq. (2)!°4.

Kreactani— product ~ CUP[Operator|jreecnty? (2)
] — I cxeited 2
InLensity = Kyround —vexcited ~ YO grpone ES (3)

Once the symmetry of the appropriate opcrator and that
of the wave functions Y4 and |™**“™ have been identified,
then it 1s easily possible to establish whether the rate must
be small on the basis of symmetry (it may, of course, be small.
for reasons unrclated to symmetry). This type of procedure
hasabundant precedent in the development of optical selection
rules (that is. in procedures for estimating the rules of spectro-
scopic transitions), where expressions of the same form are
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used [Eq. (3)]. The ability to classify reaction rates in terms
of symmetries is of obvious pertinence to the W-H rules.
This approach is also very convenient in dealing with “un-
usual” contributions to the kinetics. such as the dynamic effects
arising from non-Born-Oppenheimer terms or spin-orbit
coupling, which may cause violations of the W-H symmetry
rules, much in the way in which they cause violations of
the selection rules in spectroscopy. Such terms are not presently
included in transition state theory.

To illustrate the construction of adiabatic and quasiadiabat-
ic surfaces in an example directly relevant to pericyclic reac-
tions, we consider the closure of butadiene to cyclobutene.
For a qualitative discussion of an adiabatic potential energy
surface for this transformation we consider only the intercon-
versions of molecular orbitals formed from four atomic orbi-
tals. Hiickel-level calculation of the adiabatic potential surface
would proceed with the solution of the secular determinant
in the usual way for various nuclear coordinates corresponding
to butadiene, cyclobutene. and plausible geometries interme-
diatc between these extremes

7, —E B> 0 Bie | adiabatic
v,—E Bas 0 -0
da—k fas
1’1 Yy F

Changes in the magnitudes of the resonance (f;;= CiH[j))
and Coulomb (%= (i[H[1)) integrals with geometry lead to
changes in the energies of the molecular orbitals. and generate
the associated adiabatic potential surfaces (Fig. 4a).

Jar-=
<

Fig. 4. Schematic adiabatic (a)and quasiadiabatic (b} potential surfaces deserib-
ing the conrotatory interconversion of cyclobutene and butadicne. The lines

—

connecting orbitals indicate those interactions included in the calculation.
These interactions may. of course. range from large to zero (as shown by
the magnitude of B> in the adiabatic calculation).

Two different Hamiltonians are used for computing the
quasiadiabatic states for butadicne and cyclobutene: neither
is that used for the adiabatic calculation. For butadicne we
take 3,3 and B4 to be zero. regardless of the nuclear configura-
tions. to exclude from the quasiadiabatic electronic state of
butadiene the bonding interactions characteristic of cyclobu-
tene (Fig. 4). Similarly, the quasiadiabatic Hamiltonian for
cyclobutene has B34 and f;, equal to zero to exclude the
bonding interactions characteristic of butadiene.

7 —E B2 0 0 quasiadiabatic  “butadienc™
v, —E 0 ] 0 -0
73— E B34
g — E i
2 —E 0 0 Bis  |quasiadiabatic “cyclobutene™
22— E  Pos 0y,
y3—E 0
%y — L
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This way of constructing the quasiadiabatic states gives the
correct electronic symmetry of both butadiene and cyclobu-
tene. Having imposed the conditions which characterize this
pair of quasiadiabatic calculations, we can calculate potential
surfaces relevant to the interconversion of butadiene and cyclo-
butene by varying appropriate parameters but the shape of
these surfaces will depend on the parameters varied. Thus,
calculations in which only the distance between C' and C*
is allowed to vary will produce excited states of butadiene
and cyclobutene which differ significantly in shape: calcula-
tions in which the torsional angles ® around the C'—C?
and C*—C* bonds are also allowed to vary produce structures
that are more closely related geometrically. We shall discuss
later, in more detail. the importance of this difference for
the rate of the reactionl”.

3. The Transition Probability for Chemical Reactions

3.1. General Theory

A reaction can be treated as an electronic transition be-
tween two different electronic states corresponding to two
different quasiadiabatic potential surfaces. one for reac-
tants and one for products. The reactant system is taken
to be in a given quasiadiabatic electronic state and in a given
nuclear state (specified in terms of the rotation, vibration,
and relative motion of reactants) corresponding to the given
total energy of the reacting system. This energy may be deter-
mined by an equilibrium thermal distribution or by a non-equi-
librium photoexcitation. The state of the reactants. constructed
as described to exclude the bonding interactions that characterize
reaction. is not a stationary (time-independent) state of the
complete Hamiltonian. A stationary statc description, based
on the available quasiadiabatic wave functions. would require
mixing of reactant and product states. Since the reactants
are not in a stationary state. there is a time-dependent probabi-
lity that they will undergo a transition to a state of the product.
The rate of the transition between reactant and product states
(as between all non-stationary states in quantum mechanics)
is calculated in terms of an integral of the form ("'|Opera-
torfreecants [Eq. (2)]: the practical problend is to define the
appropriate operator for the reaction and to try to develop
methods of estimating the magnitude of this integral without
resorting to dctailed computation.

[t is helpful in describing the techniques used to calculate
these transition probabilities from reactants to products (i. e.
rates of reaction) to begin by describing an analogous and
more familiar problem: viz. that of the clectronic excitation
of a molecule by the absorption of a photon' 2!, The excitation
is a transition between different clectronic states (that is.
between different adiabatic potential energy surfaces). The

[*] Quasiadiabatic descriptions make it possible to consider most reactions
as clectronic transitions: this feature is convenient in the study of the role
of the electronic symmetry on rates. There are, however, reactions
(CO,—=CO+0 is onc cxample) which actually include a transition from
one electronic adiabatic surface to another (here spin angular momentum
is not conserved) [ 11]. In such unusual cases the situation is reversed: the
adiabatic states make it possible to consider the reaction as an electronic
transition while the quasiadiabatic ones for this example would describe
the reaction as a continuous evolution over a potential barrier located between
reactants and products.

Angew, Chem, Int. Ed. Engl, 15, 377-392 (1979)

interaction of the dipole moment of the molecule and the
electromagnetic field of the light provides the driving force
for the transition: the dipole moment operator is the required
operator. Two familiar assumptions are usually used in obtain-
ing an expression for the transition probability: first. that
the motion of the electrons is so much faster than that of
the nuclei that only the nuclear positions influence the elec-
tronic wave functions and that the nuclear movements are
not important (the Born-Oppenheimer approximation);
second. that the electronic transition is sufficiently rapid that
the nuclei are effectively motionless during the transition (the
Franck-Condon approximation). The selection rules of optical
spectroscopy follow from consideration of the symmetry pro-
perties of the initial state. the final state, and the dipole moment
operator. We emphasize that these selection rules reflect
approximations made concerning wave functions (Born
Oppenheimer and Franck-Condon approximations, neglect
of spin-orbit coupling. efc.) and the mechanism of interaction
of light with the molecule (dipole moment approximation).
If different assumptions are made, different selection rules
may result. In general. the less drastic the assumptions. the
weaker are the resulting selection rules.

Any given set of approximations yields a set of sclection
rules. If the system is not adequately described by these approx-
imations, however, lines appear in experimental spectra which
are not predicted on the basis of these selection rules. Such
lines are sometimes called “forbidden™. This adjective essential-
ly implies that an improved analysis containing less drastic
approximations is required to reconcile experiment and
theory: that is. that the analysis should take into account
more interactions in the initial and final state and more compli-
cated (and usually smaller) interactions between light and
the molecule. Thus in optical spectroscopy there exists a hierar-
chy of selection rules depending on the level of analysis.

We find a similar situation for chemical reactions. Symmetry
rules such as the W-H rules can be derived as selection rules
for the electronic transition from the quasiadiabatic electronic
state of the reactants to that of the products. The cssential
difference between the W-H rules and the spectroscopic sclec-
tion rules is the difference between the operator which causes
the transition of interest: for spectroscopy it is. in the simplest
case, the dipole moment operator. while for chemical reaction
it is, again in the simplest case, an operator whose properties
are outlined below. Since we are concerned here only with
the development of symmetry rules for chemical reactions.
it will be necessary to describe this operator only in sufficient
detail to establish its symmetry properties and the symmetry
properties of its constituent parts. Much of what follows will
involve qualitative arguments, and mathematical development
will be held to the minimum required to sketch the form
of the important integrals. Detailed discussions of the basis
for these arguments can be found elsewhere!® 131,

As the basis for our discussion of the influence of symmetry
on reaction rates. we assume that for a reaction of interest,
the appropriate quasiadiabatic potential surfaces and wave-
functions are available for reactants and products. We further
assume the reaction to be concerted and mcan thereby that
only two quasiadiabatic surfaces are important for the transi-
tion from reactants to products (Fig. 1b). Although in most
cases this definition corresponds closely to the one commonly
used (a concerted reaction is one taking place in one step.
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without intermediates) a detailed discussion of the relation
between the two definitions will be deferred to a later section
of this paper. The rate of the reaction—-that is. the rate at
which reactants are converted into products—is calculated
from the probability of a transition from each state of the
reactants (electronic and nuclear) to each state of the products.
The probability of that transition is proportional to the square
of a quantity T, called the transition matrix. The reaction
rate constant is obtained by taking the average of [T|* over
the thermal (Boltzmann) population of all states of the reac-
tants. The transition matrix T can be written as the sum
of three terms [Eq. (4)]'"7:

T:T1+T2+T3 (4)

In this expression, T is the term that gives rise to clectronic
orbital symmetry rules: T, contains contributions to the rate
from non-Born-Oppenheimer terms: T3 describes spin-orbit
contributions.

The term T, is given by Eq. (5),

Ty = CDRIR)PE(r RIONSLU R DK (R) D (5)

where the superscripts r. p refer to reactants and products
respectively. This expression differs from those normally
encountered in clectronic theory of molecules in that it depends
on both electronic (s.(r. R)) and nuclear (dy(R)) wave func-
tions. The integration over the electronic coordinates r is
indicated by single brackets

QR RIO RWE( R)Y> = [ (. RO RN R) d r (6)

and the integration over the nuclear coordinates R by double
bracketsf!*!:

CIRRNO'(RIDN(R) 3 = [OURIO (RIDN(RIAR (7

A detailed definition of the operator O requires complicated
arguments, and is neither within the scope of this article
nor required for an understanding of the influence of molecular
symmetry on reaction rate. In what follows. we will simply
assert without proof the results of development and simplifica-
tion of the expression for Ty given by Eq. (5). and for corre-
sponding expressions for T, and Tj;. The mechanics of this
development is described elsewhere!®# 13- 281 Thus. the elec-
tronic part of Eq. (5) is given by

QPR RO RN Ry = PR R)WH(r, )AL (. R) > (8)
+ other (neglected) terms(™1.

[#*] The terms left unspecified originate from the fact that we have confined
the model 1o only two electronic states. one for products and one for reactants,
and disregarded the possible (but usually unlikely) contributions of electroni-
cally excited states: and from the fact that the clectronic quasiadiabatic
states of the reactants are not necessarily orthogonal to those of the products
[ 13]. Terms due to lack of orthogonality have the same symmetry propertics
as the term written in Iiq. (8) and hence may for simplicity be omitted.
The operator H (r R} is the clectronic Hamiltonian of the complete reacting
system (including all interactions between all nuclel and clectrons).
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The second term in the transition matrix T is given by

T hzZ ' o] tomer] S Ty r)) o)
R - 2, — 1 N
T =) - 3R, | oR|
67
+<<I>UR)|<M</:R; R W{-("AR)>!‘1’?\(I'.Ri>> (9)

Here M; is the mass of the i-th nucleus and the summation
extends over all the nuclei. Notice that both the operator
0%/0R? in Eq. (9) and the electronic Hamiltonian H.(r.T)
in Eq. (8) are totally symmetric. which means that the terms
AW (r.R)/ORT and H.(r.R)(r.R) have the same symmetry
as \i(r.R). The second term in Eq. (9), therefore, has the same

symmetry propertices as T. Due to this symmetry equivalence
and to the fact that this term is generally much smaller than
the first one in Eq. (9). we shall neglect it. The remaining
first term in Eq. (9) represents the contribution to the transition
probability (and hence to the rate) from any coupling of
the motion of the nuclei to that of the electrons. Such terms.
called non-Born-Oppenheimer terms, appear in an analogous
way in spectroscopy!!?.

There is a simple way of seeing the origin of the coupling
term involving the operator ¢/0R; in the non-Born-Oppen-
heimer contribution T,. In quantum chemistry the electronic
wave functions and energies are calculated with an electronic
Hamiltonian in which the nuclei are usually held fixed. In
most cases. the electronic states thus calculated (Born-Oppen-
heimer states) are an excellent approximation. Within that
approximation. the system is confined to a single electronic
state and transitions between electronic states are not possible.
The removal of the approximation of fixed nuclei must take
into account the velocity (hence. kinetic energy) of the nuclear
motion. The velocity of the nuclei is represented by an operator
proportional to 0°0R; which appears in T, and induces transi-
tions between the Born-Oppenheimer states.

The third term in the transition matrix. T3, describes contri-
butions to the rate from spin-orbit interactions and is given
by

Ty = CDURI P2, R HgolWir. R) Y DS(R) D (10

where Hge is the spin-orbit Hamiltonian. This term could.
in principle. be expanded to include contributions to the rate
from other couplings of angular momentum terms. For
instance, the various interactions between electronic spin. nu-
clear spin. and molecular motion that determine the rates
of processes important in CIDNP experiments could be
included here. Spin-orbit interactions may become important
whenever electron spin and orbital angular momentum are
coupled. characteristically in radicals having heavy atoms.

We shall show that electronic symmetry rules for reaction
rates of the W-H type originate in the Ty term and that for reac-
tions classified as “symmetry forbidden™ by the W-H rules T is
small. T and T3 may. however. be sufficiently large, compared
to T, to make a symmetry forbidden reaction proceed rapidly.
The success of W-H rules depends in part on the fact that
contributions to the rate from T, and T3 are normally negligi-
bly small. Even if T, and T; arc small, however, it is not
necessarily the case that the relative magnitude of T, (and
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hence of T) for two competitive processes can always be
deduced solely from symmetry considerations.

3.2. Electronic Symmetry Rules of the Woodward-Hoffmann
Type

In the remainder of this section we derive the conditions
which lead to symmetry rules, and discuss certain conditions
under which these rules fail.

We emphasize that the form of these rules depends on
the level of approximation with which the system is described.
In particular, the W-H rules emerge from the most simplified
treatment, in which virtual transitions among excited elec-
tronic states of reactant and products, the non-Born-Oppen-
heimer terms, and spin-orbit coupling are ignored; the Franck-
Condon approximation is used; and the electronic wave func-
tions are generated by the Hiickel method. Various other
possible approximations are discussed in Section 4.

3.2.1. The Role of Nuclear Overlap

Using Egs. (5) and (8) we can write T, as:
T, = [ORRIGLR)ARCUIH > (1

The term {Y2IH )\t > depends on the electronic wavefunctions
and the electronic Hamiltonian and will be referred to as
the electronic part of T,: the product ®{(R)DK(R) depends
on nuclear wave functions only and will be called the nuclear
part of T,. A similar classification can be made for T, and
T, given by Egs. (9) and (10). The W-H and other electronic
symmetry rules originate from the electronic part of the transi-
tion matrix. The existence of such rules presupposes, however,
certain properties for the nuclear part. These properties are
discussed in this subsection.

Fig. 5. Tustration ol regions of substantial nuclear overlap for reactants
and products. The heavy lines represent the quasiadiabatic energy surfaces
of reactants and products. The light lines represent the nuclear configurations
at which. for a given total energy of the reacting system, the nuclear wave
functions (either one or both) are different from zero. For this qualitative
discussion we neglect the small classically forbidden regions outside the
wells of the heavy lines. At energy Eq. @ is non-zero between Ay and B,
and O is non-zero between C; and Dy. The product dL ML is therefore
zero for all nuclear coordinates. At energy E.. ®X is non-zero for nuclear
configurations between A; and B,. and @K is non-zero for nuclear configura-
tions between € and D, Hence DS MY is non-zero only between C, and
B,.

The functions OR(R) and Dy(R) describe the nuclear posi-
tions and momenta'’?!. The integral (11) for T, is non-zero
only for those energices for which the two nuclear wavefunctions
have an appreciable overlap (Fig. 5): that is, when the positions
and momenta of the nuclei in the reactant and product config-
urations described by the chosen quasiadiabatic wavefunc-
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tions are similar. The nuclear overlap is zero at low energies,
first becomes non-zero ncar the energy E* at the crossing
of the two quasiadiabatic surfaces. and then generally grows
with the energy. We denote by A(E) the set of all nuclear
configurations R for which. at a given total energy E. the
product ®Y(R)MR(R) is not zero. In the illustrative example
presented in Figure 5. A(E,) is the set of all nuclear configura-
tions between C, and B,. The integral (11) can be taken
over A(E) only: no other nuclear configurations contribute
to the integral T, since MY(R}DR(R) is zero for R outside
A(E),

T, = | DRIR)DG(R)AR QY RIH O (12)
AE)

The immediate conclusion from this analysis is that the
rate of reaction is zero if A(E) is zero. and that the energy
of crossing. E*. corresponds to the activation energy of transi-
tion state theory. since A(E)#0for E> E* (Fig. 5). The physical
picture which emerges from Eq. (12) is the following. If the
energy is less than E*. the nuclear overlap and the contribution
to the rate from T, are zero. If the energy is greater than
E* the nuclear overlap is not zero and the reaction rate
is therefore not restricted to zero by the nuclear wavefunctions.
(We neglect discussions of tunneling, which do not alter the
argument substantially.) If thermal or optical excitation
increases the energy of reactants to E, (Fig. 5). the state
of reactants will be JZ(r. R)DX(R) and the nuclei will oscillate
between A, and B, on the quasiadiabatic energy surface of
reactants (corresponding to yf). Since this state is not a station-
ary state of the total Hamiltonian. a transition may occur
to the state of the products, described by the wavefunction
2(r, RYOR(R) (Fig. 5). In this state the nuclei will oscillate
between C, and D, on the quasiadiabatic energy surface
of the products. The probability of this transition is propor-
tional to |T,|*. Loss of energy from the product at encrgy
E, will produce a stable specics with energy less than E*.
and complete the conversion of reactant to product.

This analysis of T; can be easily extended to T, and T,
and indicates that regardless of the corresponding electronic
parts of these terms, reaction occurs only if A(E)>0. and
only at nuclear configurations contained in A(E). Since A(E)
represents those nuclear configurations which are accessible
from both reactant and product state we reach the following
conclusions: regardless of how favorable the electronic condi-
tions may happen to be, a reaction occurs only through confor-
mations in which reactants and products have similar shapes.
If the reacting molecules are excited specifically. so that the
region of nuclear configurations A(FE) available to both rcac-
tants and products is increased. the reaction will be faster.
If the attainment of a common nuclear configuration for reac-
tants and products is prevented by, say, a bulky group. then
the reaction rate will be decreased.

These conclusions can be illustrated by a pertinent example

provided by the reaction!!®*

N;O + Ba — N, + BaO*

BaO is produced in an electronically excited state and the
rate of the reaction can be monitored, in a molecular beam
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experiment, by measuring the light emission from BaO*. The
mechanism is assumed to be

&

N,O + Ba - N,0” + Ba"® - N, + BaO*
where both the charge transfer and the molecular rearrange-
ment occur in a single collision. Since N,O is linear and
N,O*® is bent, then according to the above discussion the
reaction rate should increase if the N,O bending vibration
v, is excited. Experiments show indeed a substantial increase
of the rate with excitation of this vibration. Similar arguments

O
@/O
N=N + Ba
\fast 1o}
\ /O
ho N=N Ba*®
slow

® 9
N=N-O + Ba

underlie the theory of clectron-transfer reactions developed
by Marcus'*>"!,

Approximation

After clarifying qualitatively the role of the nuclear part
in the transition matrix. let us analyze the role of the electronic
term in T,

FR)=IHND = fy2(r. Ry H(r R RY d

Through Eq.(11), the values of F, (R) for all nuclear coordinates
in A(E) influence the rate. Suppose, however, that the major
contribution to T; comes from nuclear configurations in a
small range of nuclear coordinates around R, so that we
can reasonably assume that the electronic term F,(R) may
be evaluated with sufficient accuracy by taking into considera-
tion only the region around Ry. (This assumption is equivalent
to the Franck-Condon approximation.) We further assume
that the nuclear configuration Ry has some useful symmetry.
Since the electronic Hamiltonian is totally symmetric. the
electronic wave functions of reactants and products have the
same symmetry properties as the nuclei (that is they belong
to the irreducible representations of the group generated by
Ry). If the electronic wave function of reactants has a different
symmetry than that of the products (that is. if reactants and
products belong to different representations) we call the reac-
tion symmetry forbidden. All other reactions are symmetry
allowed. To avoid confusion, we should emphasize that the
precise meaning of such a statement depends upon the elec-
tronic functions & and 2 chosen to describe the system;
Hiickel wave functions would lead to slightly different conclu-
sions than SCF ones. We discuss this issue in detail later.

Let us now return to Eq. (11) for T, and see under what
conditions symmetry forbidden reactions are slow. For some
symmetrical nuclear configuration R, for which reactants and
products have different electronic symmetry we have for the
electronic integral

F1(Ro) =2, Ro) He(r. Ro)ie(r. Ro)> =0 (13

The expression F;(R) contributes to the rate T; [Eq. (11)]
not only through its value at Ro, however, but also through
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its value at all nuclear configurations R contained in A(E).
By continuity. if (Y2|Hyt) is zero at Ry it will be very
small close to Ry. If A(E) is just such a small neighborhood
of Ry (that is, if the Franck-Condon approximation holds),
then we can predict from the fact that ¢ and P have different
symmetries that T, is very small. If A(E) is large, however,
we cannot make such a statement since nuclear configurations
R which are inside A(E) but far from R, may result in a
substantial value for T,.

We can summarize this discussion with the following sym-
metry rule: a symmetry forbidden reaction will have a very
small rate if T, and T; are negligible, and A(E) is small
(corresponding closely to the Franck-Condon approximation
made in spectroscopy). Of course. in order to be able to
speak of a symmetry forbidden reaction in the first place,
A(E) must contain a symmetrical nuclear configuration. For
reactions which occur through nonsymmetric nuclear config-
urations there arc no symmetry restrictions. We note also
that the various approximations needed to derive the symmetry
rules break the coupling of the total angular momentum!©¢/,
Hence symmetry rules are obtained if the components of
the total angular momentum (electron spin, electronic orbital,
nuclear. etc.) are conserved separately.

The general electronic symmetry rules derived contain as
a particular case the Woodward-Hoffmann rules. The success
of the latter, in dealing with many examples, indicates that
the conditions of validity established are satisfied in most
cases. There are. however. situations when these conditions
are not satisfied. One example has been already presented:
excitation of the bending mode of N,O increases both A(E)
and MR DY and leads to an increase in the rate of the reaction

Ba + N,O — BaO* + N,

although the electronic part of T has remained unchanged.

We must emphasize that the symmetry of the electronic
wave functions can tell us. under the circumstances specified
above. whether a symmetry forbidden reaction is very slow.
If. however. the reaction is allowed by symmetry (i.e.. if g
and P have the same symmetry). it is not necessarily true
that QUEHP). and the rate. are large. Poor overlap may
cause (YeH P> to be small.

3.3. Violations of Electronic Symmetry Rules

We have seen that electronic symmetry rules are valid if
we neglect coupling of electronic spin (T; small), make the
Born-Oppenheimer approximation (T, small), and a Franck-
Condon approximation [sce Egs. (11), (12) and accompanying
discussion]. When any one of these conditions is not satisfied,
then the electronic symmetry rules are violated and “forbidden
reactions” may have large rates. Here we analyze these viola-
tions for the purpose of clarifying their origin and finding
ways of increasing the rate of symmetry forbidden reactions.

3.3.1. Violations Caused by the Interaction of Electronic and
Nuclear Motion (Vibronic Violations)

Let us analyze a symmetry-forbidden reaction for which
the spin-orbit coupling contribution to the rate is unimportant
(T3x0). If we assume that A(E) is small, then the term T,
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will be practically zero. Under these conditions the rate is
given by TxT,: if T, is very small the forbidden reaction
is slow. If T, is large the “forbidden™ reaction is fast, in
violation of the predictions of electronic symmetry rules.

The term T, given by Eq. (9) has a structure which is
very similar to that of T, and it is useful again to speak
of a nuclear contribution {®R|OPL/OR;» and an electronic
contribution (YRJAWE/OR; ). As in the case of T, it is possible
to make some qualitative predictions about the behavior of
these terms. The contribution from the nuclear part can be
increased by exciting those nuclear motions that make more
nuclear configurations accessible to both reactants and prod-
ucts. The magnitude of the electronic term has not been
calculated for quasiadiabatic states. It is, however, generally
considered to be small for adiabatic states and is probably
also small for quasiadiabatic ones. Its small magnitude does
not preclude it from playing an important role in large mole-
cules where the number of nuclear states 1s enormous and
the contribution of a small electronic term is summed over
all the nuclear states involved; the compounded effect may
be significant. In fact, this term is known to cause fast radiation-
less transitions in large molecules'' ®l In solids. which we
may consider to be large molecules with periodic symmetry,
these electronic integrals are responsible for important effects
like superconductivity!' "l exciton migration''®! eclectrical
resistance!!'?!, etc.

In the case of T, the magnitude of the electronic contribution
depends on the symmetry of the electronic functions. The
magnitude of the electronic part of T, is not determined
by symmetry except for special situations. To justify this asser-
tion, we use the fact that for small displacements around
some symmetrical configuration, Ry, the symmetry coordinates
Q; and the nuclear positions R; are linear combinations of
each other!?°!:

Qj: ZAjiRi

Here Aj; are numerical coefficients. Hence

p N P a, r aQ»‘, — . P a‘ﬂ"‘
<¢C M> - jZ<M 00, We>aRi - ZiA‘” <Welan>

At a symmetric nuclear configuration Ry, the terms ?(r. Ry).
Ve(r,Ro), and Q; have a definite symmetry!2%2! and some.
but not all. of the integrals {(YP|oVe/0Q;> are zero (by symme-
try). Hence

r i Ty = - n ayé
(el o)

where now the summation eliminates those Q; for which sym-
metry annihilates the corresponding integral. Since the summa-

0

E)R;

tion on the right of this equation is not constrained to be
zero by symmetry, we cannot predict the magnitude of T,
from consideration of symmetry. Only in the special case in
which one symmetry coordinate is adequate to describe the
reaction can T> be estimated from symmetry. For example,
in a reaction of thc type A+BA—AB+A this reaction
coordinate may be A— «-B-~A—. which indeed tends to break
the molecule in the desired way. Let us assumec that the
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T
displacements A«<~B—A and A--B—A are not capable of

l !

promoting the reaction. since they are not likely to create
nuclear configurations that are accessible to the product.
Hence we should consider that only (\sf[0y2/0Q, >, in which
0, denotes the symmetry coordinate A— «B-— A, contributes
to T, in Eq. (9). If the reaction is symmetry forbidden and
Pt and ? have different symmetry, {\Jf|Oy2/0Q,) need not
be zero. In fact, Q, and therefore 0/0Q; are of symmetry
Y5, Assume. for example. that the electronic states are of
symmetry Y, and 7. The integral () :[8/0Q,|Y 5 >. which
appears in T,. need not be zero since @, is of symmetry
Y. and the derivative 8/00Q; Y., is totally symmetric. In
this illustrative example the electronic symmetry, through
UEIH NS>, causes Ty to be very small while there is no
indication that the term T ,., with electronic part QU2jOVL/0Q, .
has to be small. If in this example the reaction is symmetry
allowed. and the clectronic states have the same symmetry.
say Zt the electronic contribution to T, is <X;\Z; Z;>
and it is zero. In this case T, must be negligible. for symmetry
reasons. while T 1s not. The argument is qualitative: it clearly

is not possible to estimate the magnitude of T, relative to
T, using these considerations. Nonetheless. the argument
establishes a link between molecular symmetry and T, that
corresponds to different “rules™ than those of T, (which are
essentially of Woodward-Hoffmann type) and is potentially
useful in simple reactions in suggesting types of vibrational
motions that might contribute to increasing the rate of those
reactions which are forbidden according to electronic symme-
try rules.

3.3.2. Interaction between Electron Spin and Electron Orbital
Motion

Let us now analyze a symmetry forbidden reaction for which
T, and T, are both zero. so that the rate depends on T;
only. If Ty is large the symmetry forbidden reaction is fast
and we have what is called a spin-orbit violation of symmetry
rules. It is usually assumed that the spin-orbit coupling is
small and a negligible part of the Hamiltonian. as far as
the rate of chemical reactions is concerned. This assumption
is not necessarily correct. Assume that the reactant electronic
wavefunction . is a singlet and the product ! is a triplet.
In this situation the electronic parts of T, and Ti. i.e.
CYRIHEY and QPR|OVEOR; >, are zero, due to the orthogonal-
ity of the spin part of the wavefunction. The only surviving
term in T 1s T5. Hence

T=Ts= [ OURIDR(RIAR QPP|HsolPi> {13a)
AEY

The rate of the reactions between singlet and triplet states
is determined by T; (spin-orbit coupling) only. Since the spin-
orbit coupling Hamiltonian Hgo is not totally symmetric'?2,
T3 does not have to be small when the reaction is forbidden
according to electronic symmetry rules (Y& and ? have differ-

ent symmetries). As an example consider the reaction!'!]

COL(' Y- COC Y )+ 00P)
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Schematic energy surfaces are presented in Figure 6. The
reactant state is singlet and the product state is triplet. There-
fore T (=Tj;) is given by Eq. (13a). The spin-orbit coupling
term can be estimated from spectroscopic measurements to
be about 50 c¢cm ~!. The nuclear wavefunction can be computed
for a simple model. The resulting rate coefficient agrees well
with the measured one!''! indicating that the spin-orbit cou-
pling is indeed the necessary interaction for this reaction.

Reactant

co('z+y+0(3p)

co, (‘'z}

Reo-0

Fig. 6. Schematic energy surfaces for the reaction

COL(MYH) - COM Y )+ OFP).

The spin-orbit coupling may be enhanced in the presence
of heavy atoms and inclusion of heavy atoms in reactants
should increase the probability that they will take part in
symmetry forbidden reactions.

3.3.3. The Role of Nuclear Motion. Violation of Electronic
Symmetry Rules Due to Dynamics

We have already stressed the importance of the properties
of the nuclear wave functions. If A(E) [see Eq. (12)] is very
large and the nuclear overlap is very large. predictions of
the magnitude of T;. based on electronic symmetry alone.
become doubtful. The difficulties in computing the nuclear
wave functions make 1t impractical to propose any general
calculational approaches to predicting violations of symmetry
rules due to dynamics. Qualitatively. however, such violations
occur when it is possible for the reactants to “look™ like
the product or vice versa: that is. for instance, when readily
accessible vibrational states of the reactant(s) produce nuclear
positions that closely resemble those of accessible vibrational
states of the product(s). This results in an increase of the
nuclear overlap, and in an increase in T, [Eq. (11)]. This
qualitative consideration suggests that a plausible approach
to increasing the rate of a symmetry forbidden reaction is
to increase the vibrational energy of the reactant, most simply
(but inefficiently) by heating, but also possibly by selective
laser excitation of particular vibrational modes. A particularly
pertinent example is provided by the reaction of H, and
[5. This reaction proceeding through a C,, trapezoidal config-
uration is symmetry forbidden'??! (Fig. 7). Classical mechani-
cal calculations™*! of reactive collisions indicate that as long

H—H H oW
_m / \

I—1 reaction I I

bround state

H—H reaction H R
—
J—1 1 1
I, vibrationally
highly excited

Fig. 7. Possible violation of the svmmetry rules: a forbidden reaction is
made possible by vibrational excitation.
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as 1, is in the vibrational ground state the reaction does
not occur through a trapezoidal nuclear configuration, in
agreement with the prediction of the W-H symmetry rulcs.
If T, is. however. vibrationally excited. half of the reactive
trajectorics go through the trapezoidal configurations. con-
trary to the predictions of W-H rules.

4. Hierarchy of Symmetry Rules:
cis-Butadiene—Cyclobutene Conversion

4.1. Molecular Orbital Description of Electronic Wave Func-
tions

In the discussion of the previous Section we derived elec-
tronic symmetry rules without specifying any particular proce-
dure for generating electronic wave functions. We shall now
schematically illustrate the computation of the electronic part
of T, for a specific example (butadiene — cyclobutene) and
state the electronic symmetry rules in terms of the symmetry
properttes of Hiickel molecular orbitals (as opposed to the
symmetries of the roral electronic ware functions used in the
discussions of the previous section). We neglect here any contri-
butions to the rate from T, and T;. The reliability of the
predictions resulting from these procedures depends on the
quality of the electronic wave functions: different predictions
might emerge. for example. from consideration of Hiickel
and SCF wave functions!' 1 [n such instances. it is worthwhile
to understand the origin of the discrepancy and the ways
of determining the correct prediction.

We begin our analysis by evaluating the relative magnitudes
of the electronic part of T; [Eq. (13)] for four cases— thermal
and photochemical conrotatory and disrotatory ring clo-
sures  and compare the procedure with that used in a W-H
analysis. The W-H rules predict that the conrotatory pathway
1s thermally allowed and photochemically forbidden. and that
the disrotatory pathway is thermally forbidden and photo-
chemically allowed.

4.1.1. Thermal Reactions

The classification of the Hiickel molecular orbitals for buta-
dienc and cyclobutene orbitals by symmetry is too familiar
to require discussion. but is summarized in Figure 8 for refer-
ence. One typical wavefunction for ground-state butadiene

SW‘A-\—
o* A A o*

m* S ATm*
AmyS
Sm A

™A S

7 _—/__S 7
AmS

& 7\ VA a
Conrotatory Disrotatory

Fig. 8. Correlation diagram for Hiickel molecular orbitals used for guasi-
adiabatic description of conrotatory and disrotatory ring closure of butadiene

is Eq. (14): In this expression, m;(1) indicates that the m
orbital contains an electron arbitrarily labeled [. Eq. (14)
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neglects the fact that it is not permissible to label clectrons:
equally valid distributions of electrons would be those given
by Egs. (15a) and (15b). The correctly antisymmetrized wave
function for butadiene is therefore given by the appropriatc
Slater determinant [Eq. (16)].

Ve =1 (1) (2) ma3) a(4) PX(R) (14)
Ve =m3)m(d)mal) ma(2) OU(R) (15a)
V=1 (3) (1 ma(d) ma(2) DX(R) (15b)

(1 )m(’»mmfnml
2

(1

" m OYUR
E= ~ )
| 41 |ma(l mn’mn,ml MR
(1) m2(2) m2(3) 4"
=det|m (1) m(2)ma3) m2(4)) DL(R) (16)

Similar equations can be written for cyclobutene. Thus. using
a one-electron Hamiltonian. Eq. (17), we can express Eq.
(12) explicitly, for the reaction of interest. as Eq. (18):

Ho(r.R)= Y Hi(rR) (17)

i=1.4

[ BYRIDL(RYAR (det | a(1)o(2)n(3)mi)
\E

‘ pe H;(}‘.Ridcl[n,(l)nlll)nz(3)n3(4;},:~ (18)

This expression for T, fully expanded. contains an incon-
ventently large number of terms. Fortunately it is unnecessary
to evaluate all of these terms explicitly. Since we arc interested
initially only in the influence of molecular symmetry on T,
we need only estimate the largest terms in this expression.
To find these largest terms, consider two typical terms. for
a thermal. conrotatory process as given in Egs. (19) and (20):
for convenience. these terms are also presented in a simplified
form in which only the symmetryl™] of the appropriate molecu-
lar orbital is indicated.

oI H [y (1) <ol 2 m1(2) {(r(3)maf3))> (n(d)|maid) ) =
= (SIHIA>{SIA><{AISH(AIS> (19)

<aIma (D> <S2)H 22> (R334 =
= (SIS)<SIHIS > CAIAYCAIA (20)

Evaluation of these products of integrals requires remembering
the
of symmetry considerations above, all four terms in Iq. (19)

=0:thus. on the basis

are zero (at the chosen fixed. symmetrical nuclear configuration
which serves to classify the MOs according to symmetry)
and none of the four in Eq. (20) need be zero.

In general, for a system with n electrons: Expansion of
the expression analogous to (18) affords a large number of
terms [analogous to (19) and (20)]. each being the product
of n intcgrals of type {(dP(1)|¢p'(i)y and (once per term) of
type <oP(D)[H;j|d"(1)). One such integral is to be assigned to
euch of the n electrons in each term. ¢' is a singly or doubly
occupied rcactant orbital in the given reactant configuration,
P is a singly or doubly occupied product orbital in the
given product configuration: all possible permutations of the
orbitals occur in the various terms on assignment of these

[*] S stands for symmetric and A for antisymmetric.
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reactant and product orbitals to the electron i. However,
each individual term reflects the given reactant and product
configuration: a reactant orbital which is doubly occupied
in the reactant will appear fwice in the n integrals of each
term. a singly occupicd one once. and an unoccupied one
not at all: the same applies to the product orbitals. The largest,
i.e. dominant. terms obtained on expansion are those in which
most of the n integrals {($'(i)|dP(1)> and (G (1)[H|p (1)) are
characterized by the orbital ¢" and the orbital ¢ having
the same symmetry: hence. it immediately follows that one
of the dominant terms is obtained by making maximum pos-
sible use in its integrals (¢P()|dT(D)) and {($P(DIHi¢ (1)) of
those reactant orbitals ¢" and product orbitals ¢” which corre-
Jate with one another in the W-H orbital correlation diagram
for the two reactant and product configurations under discus-
sion! In what follows. we discuss only these largest terms
which are easily determined by inspection of @ W-H orbital
correlation diagram. The number of integrals in a possible
dominant term which are equal to zero for symmetry reasons
is. of course. equal to the number of electrons which have
to change orbitals in an orbital correlation diagram (formally.
say at an orbital crossover point) in order that a given reactant
configuration be transformed into a given product configura-
tion along the corrclation diagram.

For a thermal disrotatory ring closure. inspection of the
correlation diagram (Fig. 8) immediately yields the following
representative dominant term:

CrH et 7020 a2 w3 w3 o)) =
SIS - SS AIS CAS (21

Since this ring closure (i. . transition from the reactant config-
uration min3 to the product configuration o?n”} involves
changeover of two electrons from the m, orbital into the
1 orbital, two integrals in term (21) must be equal to zero
for symmetry reasons. as is confirmed by inspection of this
term.

The expressions in Egs. (20) and (21). which represent the
clectronic part of T, for thermal conrotatory and disrotatory
ring closure respectively. are gualitatively different: two of
the terms in Eq. (21) arc zero by symmetry: none is zero
in Eq. (20). Since the magnitude of Ty is related to the rate.
the relative magnitudes of these expressions estimate the rela-
tive contributions to the rate attributable to molecular symme-
try. Since Eqgs. (200 (21) represent the electronic part of T,
they determine the rate through integrals over the nuclear
coordinates [see Lq. (11)]: for the thermal disrotatory ring
closure. for example, the appropriate integral is:

TVE) = | GOS0 SHIS > SIS)(AS ) (AIS AR

\(ED

The ter
tion inside A(E). Since A(E) is assumed small. the values
of (A|S> for all nuclear coordinates inside A(E) are very
small: we designate the contribution of each of those small
terms to T; by «. and classify the size of Ty by the number
of the terms of magnitude & which appear in the integral.
Thus. T, for the thermal disrotatory reaction is of order
g2, since two small terms appear in T,. The same argument
indicates that the magnitude of T, for the thermal conrotatory

S> are zero for a symmetric nuclear configura-
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ring closures, whose electronic part is given by Eq. (18). is
of order ¢’=1. (In Section 4.1.2, which is concerned with
the photochemical reaction, we show that T, for conrotatory
and disrotatory photochemical ring closure is of order &.)
Then, since |T;|? is the quantity related to ratc. it is possible
to classify the different types of conversions of butadiene to
cyclobutene in terms of their “degree of forbiddenness™. which
is the exponent of ¢ in T;. On grounds of symmetry alone,
the quantity ¢ is a small number compared to integrals like
(SIS or (AJA): the greater the exponent of & the smaller
will be the value of [ T|? due to the electronic integral. Qualita-
tively. there will be as many terms of magnitude ¢ in T,(E)
as there are electrons that cross. in going from reactants
to products, between orbitals of different symmetry.

This treatment thus differs from the standard W-H treatment
in permitting “degrees of forbiddenness™ rather than restricting
reactions to the two categories of “symmetry allowed™ and
“symmetry forbidden™. Onc should however be awarc of the
qualitative nature of this argument. Though each “svmmetry
forbidden™ matrix element (S|A ) or {S|H|A >, contributes with
a very small term &. it is possible that different reaction path-
ways give £'s of different magnitude. If this difference of magni-
tude is large, though both ¢ are very small. our classification
according to the powers of ¢ is not useful. Also. terms like
{SIS) or {AJA> which need not be small by symmetry may
be small for other reasons. Our classification based on powers
of ¢ implicitly assumes that (A|S) < {(S|S)> or (AJ|A). A test
of these conditions for the case at hand is nccessary before

accepting this classification.

4.1.2. Photochemical Reactions

Since photochemical disrotatory and conrotatory ring clo-
sure have been the subject of numerous discussions and calcu-
lations'?*! which sometimes seem to indicate the inadequacy
of W-H rules in describing these reactions. we shall analyze
such reactions in detail from the point of view of the present
paper. Past discussions of these matters involved the details
of the adiabatic energy surfaces and we find it useful to explore.
for this particular example. the connection to our quasiadiaba-
tic description. We shall use here quasiadiabatic wavefunctions
which give a reasonable description of the two electronic
states in the region of nuclear configuration in which the
reactant resembles the product. For this purpose we modify
the method described in Section 2 and choose the wavefunc-
tions for the disrotatory, photochemical reaction to be:

St =aydet{m myMama, +bydet | con* k] (22)
Aj=ardet|my my 1ams ) +bydeticon*n! (23)
S,=asdet {my mynymy ! +bhydeticonn) (24)

Here, for example, S; corresponds to the ground state of
butadicne when a, =1 and b, = 0. The molecular orbitals used
to form the determinants are those summarized in Figure
8. The second dcterminant in this expression serves to charac-
terize the system in a state (for cxample. at high energy)
which resembles cyclobutene sufficiently that MOs derived
from butadiene no longer provide an adequate description:
in these intermediate states, both a;, and b; are non-zero.
Variations in a; and by provide a method of describing the
system at any point in-between ground-state butadiene and
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cyclobutene in the corresponding doubly excited configuration.
Equations (23) and (24) provide analogous descriptions of
states which correspond at one extreme (a=1. b=0) to singly-
excited and doubly-excited configurations of butadiene.

al bl

Fig. 9. Schematic quasiadiabatic (a) energy surfuces for the photochemical

disrotatory clectrocyelic reaction of butadiene to cyclobutane and correspond-
ing adiabatic surfaces (b

In Figures 9a and 9b we represent schematically the corre-
sponding quasiadiabatic and adiabatic surfaces. The adiabatic
surfaces resemble the results of van der Lugt and Qosterhoff! =+,

The mechantsm of reaction in the quasiadiabatic representa-
tion is as follows. Since only A, carries oscillator strength.
the reaction starts with the molecule excited to A,. at some
energy E (see Figo Ya). Because the energy surface of A,
is fairly flat. as can be seen from the schematic correlation
diagram Figure 9a or from the Lugt and Oosterhoff calcula-
tion. the molecule undergoes large amphitude oscillations along
the reaction coordinate. For nuclear positions located at the
right of Ry (Fig. 9a) the electronic transition A;—S, which
generates vibrationally excited products becomes possible. In
direct competition with this process. for nuclear configurations
to the left of R the transition A} S, is possible: this transi-
tion generates vibrationally excited reactants. If we assume
that vibronic and spm-orbit contributions are small. then
the rates of these transitions are determined by T,. For the
case A} —-S,

Ti=  GUBTLA LS, dR

MEY

Let us analyze the clectronic part ¢(A|H.S.> from the
point of view of the symmetry of the molecular orbitals. We
see that Ay is composed of two determinants [Eq. (23)] and
inspection of Figure 8 indicates that both determinants have
the same symmetry. The same is true for the determinants
used in S». Hence all the terms in (A;[H.|S, > have the same
symmetry properties as:

y=ddet |y Mmooy [Hldet loonn) >

If we repeat the analysis of Section 4.1.1. we find that the
largest terms in % arc represented by

{myHolo > (myjo s <{malmo (malmy = (SISIS (SIS >CAISH(SIS) ~ ¢!

Thus the photochemical disrotatory ring closure is of order
of forbiddenness one. By contrast. our previous analysis indi-
cated that Ty for the thermal disrotatory ring closure is of
order £* and this reaction is of order of forbiddenness two.
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Hence. a disrotatory ring closurc is predicted to take place
more readily by a photochemical than by a thermal path.

There is no contradiction between this description of the
reaction and that resulting from the adiabatic representa-
tion?: the latter however hides the role of symmetry. The
quasiadiabatic process A; —S, (see Fig. 9a) becomes in the
adiabatic picture (Fig. 9b) A—S” (at configurations to the
right of R;) followed by S”"—S', at configurations around
R;. These transitions are due to non-Born-Oppenheimer
coupling (between the adiabatic states) which may be quite
important at R, since the electronic gap between S” and A
is small. This adiabatic description of the reaction may seem
different from that provided by the correlation diagrams and
this apparent discrepancy has created some confusion. The
adiabatic description is however equivalent to the quasiadiaba-
tic one, which in turn is equivalent to the one provided by
the correlation diagrams.

A

252
£ M2 Ty
2
. m, T,
u’zvr*z/ o
E
oc2raw*
2,2 252
ofm TT‘ 7fz

L ¢

Fig. 10. Quasiadiabatic states for the conrotatory photochemical opening
of cyclobutene to give butadiene.

The quasiadiabatic states for the conrotatory ring opening
are presented in Figure 10. Since reactant and product states
do not cross there is no possibility of an clectronic transition
which will lead to excited products.

We have ignored in the analysis kinetic factors that may
become important in photochemical reactions. like radiative
or radiationless de-excitation of the reactant state.

The discussion in this section serves to illustrate the elec-
tronic symmetry rules at the simplest level possible. when
a Hiickel description is used for the electronic wave function.
Such rules are valid when A(E) is very small and the non-Born-
Oppenheimer and spin orbit coupling are negligible. Under
these circumstances we derive all the conclusions obtained
from the original W-H rules. The rules derived here give
more details about the reaction, indicating the possible cxis-
tence of degrees of forbiddenness, and point out the important
role that the overlap of the molecular orbitals plays in the
electronic part of T;. and hence in the rate.

4.2. Hierarchy of Symmetry Rules

We have emphasized at various places in this paper the
fact that the predictions made by using the electronic symmetry
rules depend on the degree of information that we have about
the quasiadiabatic electronic wave functions. We illustrate
this point now with the example of the ring closure reaction
of butadicne. We represent the wave functions of both reactant
and product, schematically, by indicating the symmetry of
the molecular orbitals used to construct them. For the thermal
disrotatory ring closure the reactant wave function is rcpre-
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sented (Section 4.1.1) by SSAA. and that of the product by
SSSS. As we have already discussed. when we know the symme-
try of each molecular orbital, we can predict for this reaction
an order of forbiddenness of two. Now let us assume that
we want 1o use the clectronic symmetry rules to predict the
rate. but we know only the symmetry of the wave functions
of the reactants and products (from spectroscopic measure-
ments, for example) and know nothing about the symmetry
of the molecular orbitals from which the wave function is
built. For the disrotatory thermal ring closure the wave func-
tions of reactants and products are both symmetric (the SSAA
behaves upon reflection in the symmetry plane like SSSS
since AA does not change sign). Therefore based on this
information alone. using electronic symmetry rules, we see
that the reaction is allowed: to be precise. this means that
we cannot use electronic symmetry to state that the reaction
is slow. Obviously the two predictions are different and the
onc based on the knowledge of the symmetry of the MOs
is more useful. Different degrees of information need not
lead to different conclusions. For example. in the case of
reactions which can be represented as transitions from SSSA
to SSSS or SAAA to SSSS, the symmetry of the electronic
wave function of the reactants is different from that of the
products and if we do not know the symmetry of the MOs
we predict that both reactions are forbidden. The same predic-
tion is made if the symmetry of the MOs is known and
used. but in this case we gamn the additional information
that the first recaction {SSSA—SSSS) has an order of forbid-
denness one while the second (SAAA—-SSSS) has an order
of forbiddenness three.

These examples illustrate how additional knowledge of the
symmetry of MOs provides us with additional information
which can change our ability to predict the outcome of the
reaction. Thus a hierarchy of rules is possible. according to
the details of knowledge of the symmetry of the wave function.
This point has been made by Silver!®! in a discussion based
on a different approach.

4.3. The Role of the Electronic Interactions

In the previous subsection we have seen how the use of
Hiickel MO theory. which gives information about the symme-
try of MOs. aids in learning more details about the rate
of reaction. Hiickel theory has. however. the disadvantage
that it ignores to a large extent the interaction between elec-
trons. In this section we discuss the effect that inclusion of
electronic interactions. at the level of Hartree-Fock theory.
has upon the predictions of reaction rates based on electronic
symmetry.

It is very simple to take account of this interaction in
the present approach in the electronic Hamiltonian H.. which
appears in the electronic part of T,. If we write
H.=H"+H!?, for the one- and two-electron parts (H{'?
are the coulomb interactions between electrons), the two-elec-
tron operator contributes to T; terms of the form
CURIHU Pty For the thermal disrotatory reaction, for
example. YL =det |SSAA | and Y2 =det|{SSSS} and a represen-
tative two-electron term in {det {SSSS}/H!' |det {SSAA}> is
(SSIHI2|AA Y (SISY(S|S). The one-electron contribution is,
as alrcady discussed, (AISY{A|ISY{SIHISY(SIS). The two-
electron term has an order of forbiddenness zero, since SS
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has the same symmetry as AA; the onc-electron term has
an order of forbiddenness two. In this particular case, the
symmetry thus does not require that T, be small. although
the one-clectron contribution to T, is. in fact. very small.
If the two-electron term is important (in other words. if the
Hiickel approximation is very poor) we will observe violations
of the W-H rules. The success of W-H rules indicates that
the joint contribution of all two-electron terms to T, is gener-
ally small. One should. however, keep them in mind as poten-
tial sources of violation of the rules. Notice also that for
a reaction which can be described as SSSA —SSSS. and which
has an order of forbiddenness one, the two-clectron terms
behave like the one-electron ones. Indeed both (SA[H!!?SS>
and (SIH{V|A > are of order &. Therefore the electronic interac-
tions may change the predictions of the symmetry rules. based
on one-electron terms. only in the case or reactions with
order of forbiddenness two.

4.4. Role of Orbital Overlap

The principle of maximum bonding, which states that the
reaction pathway is likely to be along the pathway of maximum
MO overlap. is intimately connected to the symmetry rules
by the present approach. In fact. in our approach the symmetry
of molecular orbitals is used to determine whether the overlap

between the MOs of the quasiadiabatic wave function of

reactant and products is small. Poor overlap makes T, very
small and leads to the same cffect as selection rules based
on the symmetry of the electronic wave function. Since the
overlap between two MOs may be zero even if the symmetry
does not require it to be so. it is useful to analyze the overlap
whenever possible. For example let us compare again the
disrotatory photochemical reaction with the disrotatory ther-
mal reaction.

Figure 8 shows that the leading term in the electronic
part of Ty for the disrotatory photochemical reaction is

<o) {ry o) (mafm<maln) = (SISISH{SISHCAIS (SIS

while that for the disrotatory thermal reaction is

{mitHel o> (o) {ma|m dmalm > = <SISISY<SIS P CAISOCAIS »

S in
the expression for the photochemical reaction by
{malny = (A|S) to obtain the thermal one. Since (A|S)> must
be very small by symmetry and {S|S)> = {n;3|n) does not have
to be. the symmetry rules predict that the thermal reaction
is the slower of the two. This prediction will be inaccurate
if the overlap of (S|S)= (nsn)> is very poor so that this
term is in fact as small as (rt5|n). In this simple case. however,

The only difference is the replacement of (mijny=<(S

the overlap is large and the conclusion derived by using symme-
try alone correct. In general, in comparing the photochemical
(one electron cxcitation) with the thermal reaction. on path-
ways of the same symmetry (e.g.. both disrotatory). one has
to compare the overlaps (HOMO reactanttHOMO product)
and {LUMO rcactantfHOMO product). If the latter is larger,
then the photochemical reaction is faster.
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The principle of maximum overlap has a broader validity
than the electronic symmetry rules. The latter may be viewed
as a particular case of the former in which the symmetry
of the MOs is used to establish the existence of a very poor
overlap. The principle of maximum overlap has the same
limitations as the electronic symmetry rules in that both neglect
possible coupling of clectron spin. and both require the Born-
Oppenheimer and Franck-Condon approximation. Thus both
are restricted to consideration of electronic motion only: the
neglect of nuclear motion limits the predictive value of these
analyses of chemical kinetics.

5. Concerted and Nonconcerted Reactions

A definition of “concerted™ and “nonconcerted™ reactions
is an integral part of any examination of symmetry rules
for reaction rates. because these rules are usually applied
to concerted reactions!*°l The traditional view is that a con-
certed reaction is onc in which there is no intermediate. All
bonds that break or form during the reaction do so simul-
tancously. A nonconcerted reaction is one in which there
is an intermediate. These are useful qualitative notions. The
discussions of the preceeding sections provide a framework
with which to give operational definitions of both concerted
and nonconeerted reactions.

We define a concerted reaction as one which consists of
a single clectronic transition from the quasiadiabatic state
of reactants to that of the products. A nonconcerted reaction
is one in which at least nwo uncorrelated electronic transitions
are needed to complete the reaction. The most common situa-
tion which may give rise to a nonconcerted process is one
in which three quasiadiabatic electronic states are required
to describe the conversion of reactants to products (Fig. 11b).
One deseribes the reactants. one the products and the third
one (denoted 1 in Fig. 11b) is called the intermediate. The
two electronic transitions required to make the reaction non-
concerted are. in this case, the transition from the state of
reactants to that of the intermediate and a second transition
from the intermediate state to that of the products. In this sec-
tion we discuss nonconcertedness as it appears in reactive proc-
esses that may be characterized by three electronic states only.
The need to consider more electronic states may arise but
the discussion of such a situation is a straightforward generali-
zation of the three-state case.

The points to be discussed here qualitatively are: 1) Since
we define a nonconcerted reaction as one which requires
two clectronic transitions to complete the reaction. we must
explain why the electronic symmetry rules break down for
nonconcerted reactions and what the new symmetry rules
arc. if any. 2) How can one establish by a simple calculation
whether a reaction is nonconcerted? 3) What is the connection
between the present definition of nonconcertedness and the
ones existing in the literature?

To answer the first question. let us consider the case pre-
sented in Fig. 11b. For energy E, (the energy at R,) the
dircct transition reactant— product by a single electronic tran-
sition 1s not possible since the overlap of the nuclear wave
functions is extremely small. It is, however. possible to have
a transition reactant— intermediate since the nuclear overlap
is fairly substantial around the nuclear configuration R, cor-
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Fig. 11. a) A reaction for which the third electronic state (intermediate)
(1) is too high to be accessible. The state [ is not populated and the reaction
is concerted. b} The third quasiadiabatic clectronic state is low enough and
the transitions R -1 and [P are energetically possible. At energy £y the
reaction is nonconcerted. At energies around E; the reaction is both concerted
and nonconcerted (see text for details). ¢) Adiabatic energy surface correspond-
ing to the case of Fig. 11b. d) A flat intermediate quasiadiabatic cnergy
surface which may be expected in the case of a diradical. ¢) The flat barrier
on the adiabatic energy surface corresponding to Fig. 11d.

responding to the crossing of the energy surfaces of reactant
and intermediate (Fig. 11 b). Once the system is in the electronic
state [ the nuclei undergo oscillatory motion with the ampli-
tude BD. Within a period of oscillation (10~ '*s) the nuclei
visit the region ED, in which the nuclear wave function in
the state I overlaps well with that in the state P. A transition
from [ to P becomes possible and when this happens the
reaction is completed. One can show that the clectronic part
of the transition probability for two uncorrelated transitions.
corresponding to the part T, for concerted reactions. is of
the type!!'?: 2#1:

CUEH N> rs CUEH N Dk, (25)

where the subscripts R; and R, indicate that only the nuclear
configurations located around R, and R, neced to be consid-
cred. The derivation of the clectronic symmetry rules for
concerted rcactions has been based on the fact that the elec-
tronic part of the transition matrix has the form QYP|H Uik,
and the electronic states of reactants and products appear
in the same matrix element. Integrals of this form do not
occur in descriptions of the clectronic part of a nonconcerted
reaction. given by Eq. (25), and therefore the simple clectronic
symmetry rules which apply to concerted reactions do not
apply. Other rules are, however, possible!?®l. We can regard
the two terms of Eq. (25) as electronic parts of two independent
concerted reactions, one represented by R—1 and the other
by [-P. Hence symmetry rules apply for each of these terms
separately. If, for example, R, is very close to a symmetric
nuclear configuration RY, and the wave functions & and
Y have different symmetry (they belong to different irreducible
representations of the group generated by RY). the reaction
R—1 is forbidden. Its ratc. and correspondingly the rate of
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the nonconcerted reaction will be slow. The same argument
applies scparately to the “step™ I-» P. at nuclear configurations
R,. More details may be found in Ref."**!.

Concerning the second question: After clarifying how the
involvement of a third state can make the reaction noncon-
certed. let us indicate very briefly how one can test whether
a given process is concerted or not. One should start by
listing the chemical structures that are likely candidates for
an intermediate. Then quasiadiabatic states should be con-
structed for each intermediate. at the level of simple Hiickel
theory. For cxample, in the case of butadiene ring closure
one may think of a diradical with unpaired clectrons at C'
and C*. A guasiadiabatic state for the diradical can be con-
structed by using a 2p, orbital on each of the carbons labeled
2 and 3 and two localized orbitals for the single electrons
on C'and C*2°1 The electronic energy surface may be located
with respect to the reactants and products as shown in Figure
I1a. In this case the reaction is concerted. If the results are
as shown in Figure 11b then at cnergies Ex E, the rcaction
is nonconcerted. If the energy is raised (thermally or through
laser induced vibrational excitation) close to E, the concerted
reaction R—P starts competing with the nonconcerted one.
This possibility of simultancous coexistence of concerted and
nonconcerted pathways has been inferred from experimental
data?l

Regarding the third question: Previous definitions of non-
concertedness!2®* 4271 can be all derived from the present
one. The adiabatic surface corresponding to the nonconcerted
reaction (Fig. 11b) is shown in Figure 11c. We see that the
presence of the termediate state in Figure 11b creates a
well in the adiabatic state of Figure I1c¢ located between
reactants and products. One of the early definitions of noncon-
certedness required such a well (for a discussion of this see
Ref. 27", There is. however. a possibility that the intermediate
statc may have a flat or a sloped shape between the points
of intersection with the reactant and product surfaces. Compu-
tations show that a (lat surface is very likely. for example.
in the case of diradical intermediates'? ™ 2° Such a situation
can be scen in Figure {1d which represents a nonconcerted
reaction. The corresponding adiabatic surface is flat (Fig. 11¢)
and does not have a well. The possibility that a flat barrier.
or an adiabatic surface. can be associated with nonconcer-
tedness has been proposed in the literature!* ™. Finally. our
description of a nonconcerted process fully agrees with and
substantiates. in an obvious way. the one proposed by Doering
and Sachder™ <1 which involves in the intermediate a set
of vibrational states.

Thus. this formalism for reaction rates incorporates natur-
ally inferences drawn from experimental studies concerning
the characteristics required for a rcaction to be nonconcerted.
It does not answer explicitly!*®! the question of the minimum
lifetime required for the definable existence of an intermediate,
but instead indicates that this question is not a useful onc,
since there is a smooth continuum of possible processes ranging
from concerted to nonconcerted.
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