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Figure S1 — The electric potential gradient from the surface of the sphere a) with an

electrode and b) without an electrode.
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Using an axisymmetric model, the finite element software ABAQUS calculated the
electric potential distribution around a charged sphere on a substrate; the relative
dielectric constant for air was 1, and for the polymer substrate was 4. The electric
potential gradient (i.e. electric field) below the charged ball was much higher with a
grounded electrode beneath the substrate (Figure S1a), than without an electrode (Figure
S1b). This larger electric field increased the probability of discharge when the sphere was

above or close to the electrode.



Figure S2 — A steel sphere (d = 3.2 mm) rolling on a PS Petri dish (T ~ 25°C, RH <
10%): a) before plasma oxidation; b) after plasma oxidation of Zone B (as shown in
Scheme 1) — 15 of the 25 discharges shown occurred in Zone B; ¢) an expanded view of
the highlighted data in the blue box in (b) showing that the discharge was a “Peak”
followed by “Baseline” disruption indicative of a Zone B discharge; d) after plasma
oxidation of Zone O — 22 of the 22 discharges shown occurred in Zone O ¢) after plasma
oxidation of Zone A — 16 of the 20 discharges shown occurred in Zone A (green arrows);
f) an expanded view of the highlighted data in the blue box in (e) showing that the
discharge is a “Baseline” followed by a “Peak” disruption indicative of a Zone A

discharge.
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For samples that only had a region plasma oxidized, the charging occurred almost
entirely when the sphere rolled on the oxidized region of the PS dish. Figure S3 shows
data from a steel sphere rolling on a plasma-oxidized PS Petri dish where the oxidized
zone was positioned over the electrode (Zone O); both the steep slope of the baseline
(Qdne), and the lack of increase in {Qs + Qune}, indicated that charge separation occurred
almost exclusively over Zone O. Although this charging trend was not as apparent in the
data traces from a steel sphere rolling on a PS dish in which only Zone B, or Zone A, had
been plasma oxidized, we assumed that charge separation also occurred more rapidly
over the treated regions. The unequal charging rate over the surface must also result in
more charge on the treated region than the untreated region.

Figure S3 — 25s of data from a steel sphere (d = 3.2 mm) rolling on a Zone O plasma-
oxidized PS Petri dish. Both the steep slope of the baseline (Qgne, — * *) and the lack of
increase in {Qs + Qgne} (———) indicate that charge separation occurred almost

exclusively over Zone O.
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Derivation of Eg. 10.

Figure S4
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We assumed that the difference between x’ and x was negligible.
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Since there are 2 z components (one from the real charge and one from the image
charge):
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, A 1s the surface area of the electrode
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Here the limits y; and y, are — | and +l, and x; and x, are (n-w-0) and (n+w-0)
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Integrate over y:
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Integrate over X:
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