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Self-assembly of magnetically interacting cubes by a turbulent fluid flow
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Previous work has demonstrated that combining mechanical vibration with magnetic interactions can result
in the self-assembly of complex structures, albeit at low yield. Here we introduce a system where the yield of
self-assembled structures is quantitatively predicted by a theoretical analysis. Millimeter-sized magnetic blocks,
designed to form chains as their minimal energy state, are placed in a turbulent fluid flow. The distribution of
chain lengths that form is quantitatively consistent with predictions, showing that the chain length distribution
coincides with that of monomers or polymers in a thermal bath, with the turbulence strength parametrizing the
effective temperature.
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Self-assembly promises a new paradigm for manufacturing
small devices: instead of piece-by-piece manufacturing, struc-
tures could spontaneously assemble from individual compo-
nents into functional devices [1–5]. Enabling this technology
requires understanding how to design parts, and protocols
for their assembly, such that structures assemble with high
yield. Examples from physics have abundantly shown that
collections of identical parts, under either equilibrium [6,7] or
nonequilibrium conditions [8], allow many different structures
to form, each in low yield. The fundamental question is to
understand how to choose the parts, component and the recipe
for self-assembly, to maximize the yield of a prespecified
product. To date, perhaps the most versatile strategy for self-
assembly that has been employed uses DNA [9,10]. This work
includes the demonstrations of DNA assembly of complex
two-dimensional shapes [9] and nontrivial dynamic structures
such as an autonomous walker [10,11].

DNA-based self-asssembly brings great variability to the
generation of molecular assemblies with unexpectedly com-
plex geometries, but it has not, so far, suggested strategies for
assembly of functional structures. Practical materials require
the development of methods for assembling structures other
than DNA, or those based on DNA at length scales rang-
ing from microscopic to macroscopic. Whereas submicron
assembly can be driven by thermal fluctuations, macroscopic
(i.e., millimeter-sized) assembly cannot; in this range of sizes,
assembly requires inputting energy. A common method for
assembling macroscopic objects is vibration. For example,
Boncheva et al. [1] showed that shaking a polydimethylsilox-
ane (PDMS) sheet embedded with small magnets allowed
the sheet to fold into a closed structure; Rothemund showed
that shaking floating particles [12], with hydrophobic and
hydrophilic patches, could facilitate the formation of dense
prespecified arrays. But, in both cases, the dynamics leads to
structures that do not have the desired pattern; for example, the
yield for folding sheets into closed surfaces is in practice quite
small; others, such as Jacobs et al. [13], report high-yield
self-assembled structures based on capillary interactions in
low-melting-temperature solders.

For vibration-based self-assembly to be a viable manu-
facturing strategy, we must design structures and strategies
for agitation that allow self-assembly to proceed to a desired
state in high yield. The first step in developing a design

strategy is the ability to predict yield quantitatively. With an
accurate quantitative model for yield, we can design systems
(component parts and vibration strategy) where the yield
is maximized. Heretofore, studies of vibration-based self-
assembly have been qualitative, with no underlying theoretical
basis.

The goal of this Brief Report is therefore to introduce a
system in which the self-assembly yield can be quantitatively
controlled and compared with theoretical predictions. To this
end, we have designed a system in which millimeter-sized
magnetic blocks assemble into chains in a turbulent fluid
flow. The statistics of turbulent fluid flows have been well
characterized [14–16], leading to a stochastic forcing of the
particles; this is precisely analogous to a thermal bath, with
the effective temperature depending on the strength of the
turbulence. The distribution of chain lengths of the magnetic
blocks can be controlled by changing either the strength of
the turbulence or the magnetic binding energy. The observed
distributions are well described by a theoretical model, which
is based on a first-principles description of the mechanics of
particles in a turbulent flow.

The magnetic blocks are PDMS cubes (side length 1 cm),
with small disk-shaped magnets (1/8 in. diameter and 1/32 in.
thickness, made out of NdFeB) embedded in the center of
one face of the cube, with the north pole facing outward. A
1/4 in. × 1/4 in. × 1/8 in. square prism of soft ferromagnetic
NiCu alloy is embedded on the opposite face [Fig. 1(a)]. Two
such cubes interact by lining up the permanent magnet with
NiCu; all other permutations are not energetically favorable,
since two faces with identical magnets repel, and there is no
significant interaction between two faces with NiCu. NiCu was
selected because of its easily accessible Curie temperature, or
the temperature where the material turns from ferromagnetic
to paramagnetic. We measured the low Curie temperature for
this alloy to be TCurie = 165 ◦C; this value of TCurie is such that
we can tune the interaction energy between the magnets by
changing the temperature of the system. To tune the vibrations,
we place N cubes in a closed container (diameter 8 cm
and height 10 cm) filled with water with 0.3 M CsCl (for
matching the density of the cubes) and 10 mM Triton-X 100
(to minimize bubble formation on agitation). The jar is then
attached to a 60-cm-diam disk which is rotated at a frequency
f between 9 and 80 rpm [Fig. 1(b)]. Changing the rotation
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FIG. 1. (Color online) (a) Schematic sketch of the experiment.
N cubes are placed in a closed container, which is then attached to a
rotating disk that generates a turbulent flow. (b) Polydimethylsiloxane
blocks with small embedded disk-shaped magnets and prism-shaped
NiCu pieces. (c) Agitation in a turbulent flow causes the blocks to
form chains; green (dark gray), NiCu pieces; red (light gray), magnets.

frequency allows a continuous tuning of the strength of the
turbulence.

In a typical experiment, we begin with N = 12 dissociated
monomers, and we rotate the jar for 50 full rotations. We then
examine the distributions of chain lengths that form [Fig. 1(c)].
The chains are manually disassembled into monomers before
repeating the experiment. Figure 2(a) shows the results of the
experiment at room temperature. For each rotation frequency
f , a range of different chain lengths can form, though there is a
chain length N∗ for which the yield is maximal. N∗ decreases
with increasing f . The distribution is broad peaked, so the
yield at the maximum N is rather low, of order 15%–20%.
By changing the temperature to T = 80◦C, we can tune the
strength of the magnetic interaction and, hence, shift the
distribution [Fig. 2(b)].

We now turn to a theoretical description of the assembly
process. The rotation of the cylinder produces a time-
dependent flow inside the jar; the monomers move both from
their interactions with each other and from the turbulence. The

FIG. 2. Histogram of the distribution of chain lengths measured
in the experiment, for a range of different rotation rates, and both
(a) room temperature and (b) T = 80 ◦C. Changing the temperature
shifts the strength of the magnetic interaction. The peak of the
distribution shifts as a function of both temperature and rotation rate.

translational equation of motion for the center of mass of the
ith monomer is thus

mp

d2xi

dt2
= cD

dxi

dt
− ∇V (Xi) + ξ (t). (1)

The inertia of the particle, with mass mp, is dissipated in
proportion to the velocity of the particle, where cD is the drag
coefficient. The particles interact with each other through a
magnetic potential, V (xi) = ∑

i �=j U (|xi − xj |), which sums
the magnetic interaction U (η) set up by the surrounding
particles. ξ (t) represents the agitation the flow provides to
the particle.

The quantitative values of both the drag coefficient cD and
the turbulent forcing ξ (t) depend on the size of the particles
relative to the turbulent eddies in the fluid flow. A typical
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eddy size is the Kolmogorov microscale, �η, the length scale
at which the local Reynolds number is equal to unity; in
the present experiments, this is �η ≈ 10−3 cm, far smaller
than the size of the cube, dp ≈ 1 cm. This implies that the
drag on the particle is dominated by the viscous stresses
exerted on the particles by the eddies of competing size.
Phenomenological characterizations of this drag [17] estimate
the drag coefficient to be cD = 24πμdp(1 + 0.1315Ren

p),
where Rep = (dp/�η)4/3 and n = 0.82 − 0.05 log10 Rep.

To understand the turbulent forcing ξ (t), note that the
typical deceleration time scale for the particle (mp/cD) is
≈25 times slower than the turnover time scale of turbulent
eddies [14,17]. Thus, on the typical time scales of particle
motion, the fluid forcing behaves as a time-uncorrelated
process [18–20]. The central limit theorem therefore implies
that the fluid forcing is temporally uncorrelated, Gaussian, and
with zero mean. Hence, we have 〈ξ (t)〉 = 0 and 〈ξ (t ′)ξ (t ′′)〉 =
2qδ(t ′ − t ′′), which implies a particle diffusion constant to
be D = m2q/2c2

D . The noise strength q can be estimated by
considering that the viscous stress exerted by an eddy of size
dp on the particle is τ ∼ μ〈δu(dp)2〉1/2/dp, where 〈δu(dp)2〉1/2

is the typical velocity of an eddy of size dp. This quantity is
referred to as the second-order structure function of a turbulent
flow, and several investigators [16] have confirmed the scaling
laws predicted by Kolmogorov’s theory. We can hence estimate
q ≈ 0.147 (cm/s2)2 and cD/m ≈ 5 s−1 for the current system.

With these assumptions, Eq. (1) is a classical Langevin
equation [21]. The flow configuration is therefore identical to
a set of interacting particles in a thermal bath, with an ef-
fective temperature kBTeff = cDD. The stationary probability
distribution can be obtained by solving the associated Fokker-
Planck equation; this stationary distribution is simply given
by the Boltzmann distribution for the interacting particles,
with the temperature Teff . The present problem is analogous
to finding the probability distribution of the distribution PN of
chain lengths of linear monomers of length N in a thermal bath,
a classical problem of polymer physics [22]. The probability
distribution requires computing the partition function �NQN

for linear aggregates of size N ; this decomposes into its
translational (qt ), rotational (qr ), vibrational (qv), and bulk
terms

QN = q
(N)
t q(N)

r (qve
−V ∗/kBTeff )N, (2)

where V ∗ is the binding energy of two magnets to each other.
Following [22], we can evaluate the various partition

functions: the translational partition function is given by
qt ∼ (NmkBTeff)3/2, whereas the rotational partition function
for a rod of length L = N�, where � is the dimension of
each block, is given by qr ∼ (IANkBTeff)1/2(IBNkBTeff), where
IAN and IBN are the moments of inertia for rotating a linear
aggregate of length N around its long axis and perpendicular
axes, respectively. These are thus given by IAN = m�2N/8
and IBN ≈ mNL2/48 = mN3�2/48, respectively. Putting this
together, we have that QN ∼ N5xN , where the factor x =
e−V ∗/kBTeff . This therefore implies that the probability distribu-
tion is given by

P

PNm

=
[

N

Nm

exp

(
1 − N

Nm

)]5

, (3)

FIG. 3. (Color online) Comparison of theoretical prediction
and normalized experimental results: symbols represent data from
aggregates at room temperature and 80 ◦C, and the colors represent
different rotation speeds. The solid line is the theoretical prediction
[Eq. (3)]. The error bars are statistical [23].

where the most probable configuration occurs at chain
length Nm:

Nm ∼ −5kBTeff

V ∗ . (4)

This theoretical description makes a number of explicit
predictions that can be tested in experiments. First, the shape
of the probability distribution depends on a single parameter
Nm; if we take the measured distributions shown in Fig. 2 and
rescale the chain lengths by Nm, and rescale the probabilities
by the measured P (Nm), the distributions should collapse onto
a single curve. Figure 3 shows this collapse, compared with the
theoretical prediction for the shape of the distribution given in
Eq. (3). The different colors in the figure represent different
rotation speeds, whereas the different shapes represent two
different temperatures (magnetic binding strengths). The error
bars on the data points correspond to statistical sampling error
[23].

A second prediction of the theory is that the peak position
Nm should decrease linearly with the angular velocity of the
rotation and depends inversely on the magnetic interaction
energy V ∗ between the monomers. The experiments reported
in Fig. 2 vary both f and V ∗; changing the temperature from
21◦C to 80 ◦C roughly halves V ∗. Figure 4 confirms both
predicted relationships: the linear dependence on ω and the
predicted change in this relationship following an increase in
the real temperature.

To summarize, we have demonstrated that a turbulent flow
can be used to create a well-controlled effective thermal
bath for a mesoscopic self-assembling system. This allows
the design of an experimental system where the assembly
yield can be well controlled and predicted by theoretical
analysis. Changing both the strength of the turbulence and
the binding energy of the magnets causes changes in the
measured probability distributions of the chain lengths that are
well captured by the theory. While the theory explained here
predicts well the behavior of the system, it should be noted that
Eq. (3) is valid in the dilute limit; further refinements, such
as hydrodynamic effects between cubes, have been ignored
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FIG. 4. (Color online) Peak position, Nm, vs angular velocity
of the jar, ω: squares and circles represent data from experiments
conducted at room temperature and 80 ◦C, respectively. The lines
represent a best fit through the data with the gradient stated in
the legend. This figure provides evidence for the predicted linear
relationship between Nm and ω and the dependence on the interaction
energy.

since these effects are smaller than the magnetic interactions
between the cubes when they are in close proximity to each
other.

This work leads to several points that are significant for
mesoscale self-assembly: The ability to create a controlled
white noise source where the assembled yield can be predicted
leads to the possibility of a priori designing the interactions
between the structures (by tuning the strengths of the magnets
or their positions) to maximize the yield of the desired struc-
ture. More generally, there is tremendous opportunity for using
flow fields—turbulent or not—for controlling the assembly
of mesoscopic objects. While this idea is in its infancy, the
simple method seems to present opportunity for controlling
and designing self-assembling systems on intermediate length
scales. Another intriguing possibility is the use of chaotic
advection in planar or microfluidic flows for creating effective
temperature fields for millimeter-sized objects. The advantage
here is that in addition to the random component there is also a
mean flow; one could imagine creating a multistaged “factory”
for creating complex structures. A major challenge is to use this
methodology to design useful structures at the millimeter scale,
where the flow characteristics and interactions are chosen to
maximize yield.
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