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1. Fabrication of the microfluidic device.  

The microfluidic devices used in our nucleation experiments in the presence of 

electric fields are similar to the ones that we used previously to measure the rates of 

nucleation of ice in supercooled water1. The channel and nozzle are of the first design 

listed in table ST-1 in the supplementary information of Ref.1, which also describes the 

construction and assembly of the devices. The difference from the devices described in 

Ref. 1 consists of the use of high voltage electrodes instead of microfabricated 

thermometers. 

Figure S1 shows the actual construction of the structure described in Figure 1b. The 

ground electrode is a 200-nm thick Pt layer sputtered on a 50×75×1 mm microscope slide 

made from soda-lime glass. Top electrodes were cut with a diamond saw from 1.1 mm-

thick, ITO-coated float glass slides (Delta Technologies, Ltd.). Wires connected both 

electrodes to the rest of the electrical circuit. The wire for the bottom electrode was 

simply soldered with indium to the Pt layer, but the electrical connection of the top 

electrodes required special precautions to avoid the formation of regions of low dielectric 

strength between electrodes. Figure S1a shows the construction of top electrodes: we first 

polished their edges to a smooth shape, then we sputtered Pt over the edges to create an 

electrical via connection between the bottom and the top of the slide, and we soldered the 

wire to the top of the slide. 

The dielectric spacers (see Figure 1b) were made from 150-micron thick glass 

coverslips (NeuroScience Associates), and glued to electrodes using epoxy resin (Duralco 

4462, Cotronics Corp.). To reduce the thickness of the bonding layer of resin, we pressed 

the slide and the coverslip together using a vise; the final thickness of the bonding layer 

varied between 5 and 20 microns. 

Figure S1b shows a picture of a microfluidic device for the study of nucleation under 

external electric fields. The devices had two identical independent channels, and each 

channel had its own high-voltage electrode; the grounding electrode was common to the 

whole device. A third electrode, placed over the inlet and nozzle area, was kept at the 

same potential as the ground electrode; the purpose of the third electrode was to screen 

near the nozzle the electric fields generated by the high voltage electrodes; these fields 

might affect the generation of drops.  
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Figure S1. The construction of microfluidic devices for nucleation experiments in electric fields. 
a) Schematic of a cross-section though the device (not to scale) showing how the electrodes were 
assembled and connected. We embedded the top electrodes in a PDMS slab prior to curing; after 
curing we bonded the slab to the bottom electrode. b) Picture of one microfluidic device. The 
devices had two identical channels that could be used independently. High voltage electrodes 
apply a strong electric field on a section of the channel ~25 mm long, and a third grounded 
electrode placed over nozzles screened the drops from electric fields. The units on the ruler on top 
of the image are centimeters. 
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2. Derivation of equations 2 to 4.  

2.1. Periodic variables and their rate of change. The mechanisms that lead to the 

screening of electric fields in water do not act instantaneously after the external electric 

field changes; instead, the electric field decays to a fraction f of its initial value in a 

characteristic time, τequil. We choose f to be approximately equal to 1/e (here e is the base 

of the natural logarithm) since many equilibration mechanisms lead to an exponential 

decay of deviations from the equilibrium values. We can define the rate of change 

characteristic to an equilibration mechanism, ωequil, as the inverse of the equilibration 

time τequil. (Eq. S1).  

equil
equil 

 1
      Eq. S1 

The rate of change of a periodically-varying variable is higher than the frequency of 

the change; during one period of oscillation, the variable evolves four times between its 

extreme values and the mean value. In the case of a sinusoidally-varying variable the 

relation between the frequency of the variable, fperiodic, and its rate of change, ωperiodic, is 

given by Eq. S2: 





2
periodic

periodic       Eq. S2 

For our screening problem, we can define a screening frequency, fscreen, which is 

related to the screening rate ωscreen by Eq. S3. 




2
screen

screenf       Eq. S3 

To create fields inside water, the frequency of an external AC field, fAC, must be 

larger than fscreen; combining this condition with Equation S3 we arrive at Equation 4. 

 2.2. Autoionization. Natzle and Moore2 determined experimentally the time in 

which an excess concentration of H+ and OH– in pure liquid water decays to 1/e of its 

initial value. At room temperature (300 ºK) this decay time, τauto, is equal to 

approximately 50 microseconds. We can calculate using Equation S1 the rate of 

screening due to autoionization at room temperature, ωauto; the result is Equation 2.  

2.3. Electrical screening by diffusing electrical charges. Screening of electric fields 

by a material involves a redistribution of free charges present in the material until the 
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field generated by these charges creates a screening field that cancels the external field. 

To estimate the rate of screening in water, we use a system that is composed of a flat 

interface between water and air; an external field that is perpendicular to the interface and 

has a magnitude Eexternal is applied instantaneously on the system. The electric field inside 

water, Ewater, is initially equal to the field in air, but it is rapidly reduced by a factor equal 

to the dielectric constant of water, εw, as water molecules polarize and reorient their 

dipole moments in response to the field. This reduction in the field is completed in a time 

on the order of a nanosecond, which is much faster than the rate at which our external 

fields vary; therefore the field in water is given by Eq. S4: 

w

external
water

E
E


      Eq. S4 

Eventually, magnitude of the electric field in water drops to zero as free H+ and OH– 

ions drift due to the field Ewater and build up surface charge at the air/water interface. This 

surface charge creates an electric field, EDebye, which opposes Ewater and grows until it 

cancels it. 

The surface charge is distributed in a thin layer near the surface: the Debye layer. We 

can use Equation S5 to estimate the timescale of formation the Debye layer, τDebye, as the 

time in which an ion with a mobility μi drifts under the effect of the electric field of 

intensity Ewater over the thickness of the Debye layer δDebye: 

wateri

Debye
Debye E


       Eq. S5 

The electrical field produced in water by the charge in the Debye layer, EDebye, is 

given by Eq. S6, where ε0 is the permittivity of vacuum and σDebye is the surface density of 

charge in the Debye layer. 

w

Debye
DebyeE




0

      Eq. S6 

We estimated σDebye assuming that either only positive or only negative ions are 

present in the Debye layer, and that the spatial density of ions is equal to the equilibrium 

density of ions in water, n0 (Eq. S7): 

DebyeeDebye ne  0      Eq. S7 
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 In Eq. S7, ee is the charge of the electron. Combining Eq. S5 to S7, we deduce a 

formula for τDebye (Eq. S8): 

ie

w
Debye ne 


0

0      Eq. S8 

Equation 3 follows from Eq. S8 if we define the rate of screening due to charge 

diffusion, ωDebye, to be the inverse of the timescale of formation the Debye layer τDebye. 

 

3. The electrical circuit. 

The electrical circuit (Figure S2) supplied alternating high-voltage potentials across 

the microfluidic device, and monitored and recorded these voltages during experiments. 

The high voltages were measured at the output port of the amplifier rather than at the 

device; we supplied small voltages from the signal generator (~1V peak-to-peak 

amplitude) to confirm that the amplitudes of voltages at the source and at the device were 

equal.  

 

 

 

Figure S2. Schematic of the electrical circuit used in experiments. The high voltage amplifier 
provided both high voltages for experiments, and scaled-down voltages for recording and 
monitoring.  The oscilloscope recorded the shape of the alternating voltage, while the multimeter 
recorded the effective value of the voltage during the whole duration (tens of minutes) of an 
experiment. 
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4. Measurements at other frequencies of the electric field. 

Figure S3 shows the results of freezing experiments for electric field frequencies of 3, 

10, and 30 kHz. The voltage at which premature freezing occurs increases with 

frequency.  Lower frequencies induce larger oscillations of the shape of the drop; the 

drop thus starts to sample regions with colder carrier fluid at smaller applied voltages. 

 

Figure S3. Freezing experiments in the presence of electric fields with frequencies of 3 kHz (19 
358 drops), 10 kHz (19 341 drops), and 30 kHz (19 513 drops). 
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5. Numerical modeling of electric fields inside the microfluidic device. 

5.1. Geometry and boundary conditions. Figure S4 shows the geometry of the 

numerical model and the notations that we used. The electric field inside the microfluidic 

device was calculated numerically using a commercially available finite element analysis 

package (COMSOL). The geometry used in the calculations is illustrated schematically 

above. A droplet of diameter D is positioned at the origin inside a rectangular channel of 

length L, width w, and height 3; the other dimensions are illustrated Figure S3. The 

electrostatic potential, φ, within each region i is governed by Laplace’s equation (Eq. S9); 

we have neglected the effects of free charge (e.g., due to dissolved ions) as discussed in 

the manuscript. 

2 0i        Eq. S9 

 

Figure S4. The geometry of the numerical model. 

 

At the interfaces between the dielectric regions, the potential satisfies the following 

conditions (Eqs. S10–S14): 

 Internal Interfaces: 

 i j 
     Eq. S10

 

 ( )i i j j 0       n
    Eq. S11

 

where i is the dielectric constant of region i, and n is the unit normal vector directed 

from region i to region j. Additionally, the top electrode (z = h/2) is maintained at a 

constant voltage V0; the bottom electrode (z = –h/2) is grounded. At the other external 

boundaries, it is assumed that the field is directed only in the z-direction. 
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External Boundaries: 

 0( / 2)z h V        Eq. S12 

( / 2) 0z h         Eq. S13 

 ( ) 0  n  at / 2y L   and / 2x L     Eq. S14 

After solving for the electric potential throughout the domain, we compute the average 

electric field within the droplet, Edrop, as (Eq. S15): 

 

     Eq. S15

 
drop

drop

V

dV E

 Because the field is not perfectly uniform within the drop, we also computed the 

variance σdrop,i of each component i of the field about the mean value using Eq. S16: 

 

2

2
, ,

drop

drop i drop i
iV

E d
x


 

   
 V

     Eq. S16 

5.2. Numerical results. In this section of the supporting information, we expressed 

all electric fields as a fraction of the ‘average’ applied field, E0 = V0 / h. We calculated 

the magnitude of the field inside the drops for three cases: (1) using the most probable 

values of the experimental parameters; (2) using the limit values of experimental 

parameters that correspond to an upper limit of field; and (3) using the limit values of 

experimental parameters that correspond to a lower limit of the field. Case 1 corresponds 

to the most probable value of the field. Table ST-1 lists the experimental parameters of 

case 1 and the corresponding values of the electric field, and Figure S5 shows the 

magnitude of electric fields inside the device. 

Table ST-1. Case 1: most probable parameter values, and corresponding electric fields.  
Parameters 

1 20 m A (Epoxy) 4 
2 150 m B (Glass) 6.7 
3 125 m C (PDMS) 2.65 
w 200 m D (PFMD) 2.13 
D 70m E (water) 110 

 
Results 

 i = x i = y i = z 
Edrop,i / E0 0 0 0.110 
i  / E0 4.0×10–4 3.3×10–4 6.1×10–4 
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Figure S5. The magnitude of the electric field, E, scaled by the applied field E0 = V0/h. This field 
was calculated using the most probable values of experimental parameters (Case 1).  

 

 

5.3. Estimation of the uncertainty in magnitude of the field. For small deviations 

about the most probable parameter values, the resulting electric field depends linearly on 

small changes in the values of parameters. The change in the magnitude of the electric 

field E is given by Eq. S18, and Table ST-2 lists experimental values of the slopes of 

variation of E with our experimental values; here we indicated the most probable values 

with an asterisk. 

* *

, ,* *
, , ( ) ( ) ...drop z drop z

drop z drop z A A B B
A B

E E
E E    

 
    

            
*

  Eq. S18
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Table ST-2. Linear coefficients of variation of the electric field with the parameters of the 
microfluidic device.  
 

Parameters 

 *

, 1/drop zE    5.2×10–4 m–1  *

, /drop z AE    2.4×10–3 

 *

, 2/drop zE    ×10–4 m–1  *

, /drop z BE    6.7×10–3 

 *

, 3/drop zE    ×10–4 m–1  *, /drop z CE    5.9×10–3 

 *

, /drop z E w   1.9×10–5 m–1  *

, /drop z DE    2.8×10–2 

 *

, /drop z E D   2.7×10–4 m–1  *, /drop z EE    . 7×10–4 

 

The linear coefficients in Table ST-2 indicate whether an increase in a given 

parameter will increase or decrease the value of the electric field. We used these 

correlations to select sets of upper and lower limits of experimental parameters that 

correspond to maximum (Case 2) or minimum (Case 3) values of the electric field. Table 

ST-3 lists the parameters and the fields of Case 2, and table ST-4 lists the parameters and 

the fields of Case 3. 

 

Table ST-3. Upper limit of the magnitude of the electric field 
 

Parameters 
1(low) 0 m A (high) 4 
2 (low) 150 m B (high) 7.75 
3 (low) 125 m C (low) 2.65 
w (high) 200 m D (high) 2.13 
D (high) 70m E (low) 100 

 
Results 

 i = x i = y i = z 
Edrop,i / E0 0 0 0.142 
i  / E0 5.5×10–4 4.5×10–4 8.3×10–4 
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Table ST-4. Lower limit of the magnitude of the electric field. 
Parameters 

1(high) 30 m A (low) 4 
2 (high) 150 m B (low) 4.6 
3 (high) 140 m C (high) 2.65 
w (low) 200 m D (low) 2.00 
D (low) 70m E (high) 110 

 
Results 

 i = x i = y i = z 
Edrop,i / E0 0 0 0.0800 
i  / E0 2.1×10–4 1.3×10–4 2.7×10–4 

 

For a voltage of 700 V applied on a device with a thickness of 465 microns, the field 

inside drop is 1.6×105 V/m, and the maximum and minimum values of the field are 

2.0×105 V/m and 1.2×105 V/m; the magnitude of the field, including experimental 

uncertainties, is 1.6±0.4×105 V/m. 

 

6. Calculation of sensitivity to changes in the rate of nucleation. 

The goal of this calculation is expressing the minimum factor, Ksens, by which we can 

observe changes in the nucleation rate JN relative to ; JN the rate of nucleation in the 

presence of an external factor and  the value of the nucleation rate in the absence of 

that factor. Ksens is thus defined by Eq. S19, and the calculation of sensitivity will express 

it as a function of the experimental parameters measured, i.e. the freezing positions of 

drops xi (Eq. S20)  

0
NJ

0
NJ

0
N

N
Sens J

J
K       Eq. S19 

)( iSens xfK       Eq. S20 

Over the range of nucleation temperatures (–36 to –38 ºC) the nucleation rate  

observed in our system1 can be approximated by Eq. S21, where A and B are fitting 

constants and T is the absolute temperature in degrees Kelvin. 

0
NJ

BTATJ N )(log 0     Eq. S21 

Next, we express JN by Eqs. S22 to S25: 
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BTAKTJ sensN  log)(log     Eq. S22 

B

K
BBTATJ sens

N

log
)(log     Eq. S23 

)(log)()(log 0 TTJTtBATJ NN      Eq. S24 

Equation S24 shows that within the range of temperatures in which drops nucleate ice 

homogenously, an increase in the nucleation rate by a factor Ksens is equivalent to a shift 

in the temperatures of nucleation, δT, that is given by Eq. S25: 

B

K
T senslog
      Eq. S25 

For the nucleation experiments reported here the relation between freezing 

temperatures and freezing positions was approximately linear, therefore we expressed the 

shift in the temperatures of nucleation, δT, as a function of the minimum observable shift 

in freezing positions, δx, the spread of freezing positions, Δx, and the spread of nucleation 

temperatures ΔT (Eq. S16): 

T
x

x
T 



      Eq. S26 

Combining Eq. S25 with Eq. S26, we can then express Ksens as (Eq. S27): 

T
x

x
B

Ksens






10      Eq. S27 

Fitting the rate of homogenous nucleation from Ref. S1 with Eq. S21 we 

determined , and we used the spread of temperatures of nucleation from data in 

Ref. S1 to get  The data shown in Figure 2 has a spread of freezing positions 

of To determine δx, we performed first a 100-point running average of the 

raw data to determine the approximate average of the freezing positions. We chose the 

number of points in the running average such that the intensity of the electric field is 

approximately constant during the time required for recording the number of data used in 

the running average. Recording 100 points requires 2 seconds of operation – equal to one 

tenth of the period of modulation of the electric field. δx was equal to three times the 

standard deviation of the running average during one cycle of the modulation of the 

1Cº2 B

2T

mm.

C.º

7x
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electric field; mm.3.0δ x

Cº

Using these values of B, δx, Δx, and ΔT, Eq. S26 

gives , and Eq. 27 gives09.0δ T 1.5.sensK

)(

 

 

7. Derivation of Equation 12. 

7.1. Model. We will derive Equation 12 using a system of Nw=1000 molecules of 

water; this number is approximately equal to the number of molecules in a critical 

nucleus of ice during homogeneous nucleation. In our calculations we assumed that the 

surface energy between ice XI and supercooled water is the same as the one between ice 

Ih and supercooled water. Using this assumption, the difference in free energies is equal 

to the difference between the free energies of the bulk of the system. 

7.2 The free energy of ferroelectric ice at 235 ºK. The free energy of ice XI is equal 

to free energy of ice Ih at the temperature of the ferroelectric ordering transition, TXI-Ih. 

We used this equality to estimate the difference between free energies of ices above TXI-Ih. 

At TXI-Ih the relation between thermodynamic functions is given by Eq. S28, 

0)()(  IhXIIh T XIG   IhXIIhXIIhIhXI TSH  XIIhXI TT   Eq. S28 

where ΔGXI-Ih(T) is the difference between the free energies of the ferroelectric and 

hexagonal ice nuclei, and ΔHXI-Ih and ΔSXI-Ih are the differences between enthalpies, and 

between entropies, of the two nuclei. To evaluate ΔGXI-Ih(T), we made the assumption 

that ΔHXI-Ih and ΔSXI-Ih do not depend on temperature. This assumption that ΔHXI-Ih does 

not depend on temperature is supported by experimental measurements of the specific 

heat of ice XI; the difference between the specific heats of ice Ih and ice XI is negligible 

below TXI-Ih
3. Above TXI-Ih, ΔHXI-Ih is likely to remain constant because it arises from 

electrostatic interactions between molecules4; electrostatic interactions in an ice crystal 

do not change significantly when the temperature is changed. The value of ΔGXI-Ih(T)  

above TXI-Ih is given by Eq. S29, in which we used Eq. S28 to express ΔHXI-Ih as a 

function of ΔSXI-Ih. 

)()( IhXIIhXIIhXIIhXIIhXI TTSSTHTG     Eq. S29 

The difference in entropy between the two phases is caused by proton disorder in 

hexagonal ice. In hexagonal ice the configurational contribution to entropy per molecule, 

s, was calculated theoretically by Pauling5 to be s = kB ln(3/2), where kB is Boltzmann’s 
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constant. Equation S30 gives the free energy of ferroelectric ice relative to the free 

energy of hexagonal ice: 







  2

3
ln)()( IhXIBwIhXI TTkNTG    Eq. S30 

7.3. Electrostatic contributions to free energy. A particle with a permanent electric 

dipole of moment p that has a an absolute temperature T and is placed in an uniform 

external field of magnitude E will be influenced by the field such that on average, the 

projection of the dipole moment along the direction of the field is .Ep  The electrostatic 

free energy of the particle is equal to the electrostatic energy of the particle when the 

system is in thermodynamic equilibrium at temperature T. The free energy is thus given 

by Eq S31: 

EparticleE pEG ,      Eq. S31 

The average of the dipole moment, Ep , can be much smaller than p in weak electric 

fields because of thermal agitation. We can evaluate the magnitude of a strong electric 

field that orients dipoles against thermal agitation, Ep, using Eq. S32: 

 
p

Tk
E b

p       Eq. S32 

For a molecule of water in ice Ih (p = pw = 6.2×10–30 C·m) at a temperature  that is 

typical for homogenous nucleation (T = 235 ºK), for a ferroelectric 

nucleus (p ~ Nw pw = 6.2×10–27 C·m), Since the largest fields that 

we might investigate experimentally in micron-sized samples of water have magnitudes 

between Ep,water and Ep,nucleus, we made the simplifying assumptions that (i) the water 

molecules in the nucleus of ice Ih are not aligned along the field, and (ii) the ferroelectric 

nucleus, along with all molecules in it, is perfectly aligned with the field. The average 

dipole moments, 

V/m;105 8
, waterpE

V/m.105 5, nucleuspE

IhEp , and XIEp , , of the hexagonal and ferroelectric nuclei are then given 

by Eqs. S33 and S34: 

0, IhEp       Eq. S33 

wwXIE pNp ,      Eq. S34 
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Equation S35 expresses the difference between the electrostatic free energies of the 

two nuclei, ΔGE,XI-Ih, : 

  wwIhEXIEIhXIE pENppEG   ,,,    Eq. S35 

Adding the electrostatic contribution to the temperature-dependent formula for the 

difference of free energies (Eq.S30) we obtain the following formula for the total 

difference in free energies (Eq. S36): 

wwIhXIBwIhXI pENTTkNTEG 





  2

3
ln)(),(   Eq. S36 

Equation 12 was derived from Eq. S36 using the condition .0),(   nuclferroIhXI TEG  
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