
Proc. R. Soc. A (2012) 468, 361–377
doi:10.1098/rspa.2011.0316

Published online 28 September 2011

Robust error correction in infofuses
BY GREG MORRISON1,*, SAM W. THOMAS III2,4, CHRISTOPHER N.

LAFRATTA4,6, JIAN GUO5, MANUEL A. PALACIOS4, SAMEER SONKUSALE5,
DAVID R. WALT4, GEORGE M. WHITESIDES2 AND L. MAHADEVAN1,3,*

1School of Engineering and Applied Sciences, 2Department of Chemistry and
Chemical Biology, and 3Department of Physics, Harvard University,

Cambridge, MA 02138, USA
4Department of Chemistry, and 5Department of Electrical Engineering,

Tufts University, Medford, MA 02155, USA
6Department of Chemistry, Bard University, Annandale-on-Hudson,

NY 12504, USA

An infofuse is a combustible fuse in which information is encoded through the
patterning of metallic salts, with transmission in the optical range simply associated
with burning. The constraints, advantages and unique error statistics of physical
chemistry require us to rethink coding and decoding schemes for these systems. We
take advantage of the non-binary nature of our signal with a single bit representing
one of N = 7 states to produce a code that, using a single or pair of intensity
thresholds, allows the recovery of the intended signal with an arbitrarily high recovery
probability, given reasonable assumptions about the distribution of errors in the system.
An analysis of our experiments with infofuses shows that the code presented is
consistent with these schemes, and encouraging for the field of chemical communication
and infochemistry given the vast permutations and combinations of allowable non-
binary signals.
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1. Introduction

Infochemistry is an emerging field, attempting to develop methods of storage and
transmission of information using chemical or material means. The advantage of
these modes of communication over electronic communication will depend on the
speed, reliability and versatility of the transmission, as well as the conditions
under which the signal is to be sent (e.g. with no power source available), but
remains relatively unexplored, as the maximum rate at which information can be
transmitted is limited by the physical length scales and time scales in the system,
as well as the noisiness of the channels, which clearly differs significantly from
their electronic analogues.
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Recent work has shown that it is possible to transmit and receive messages
by both chemical and material means with an infofuse (Thomas et al. 2009;
Kim et al. 2010)—a combustible system in which patterned metallic salts
encode information, and an infobubble (Hashimoto et al. 2009)—a bubble-
based microfluidic device in which optical pulses encode information. Infofuses
are advantageous in a number of ways: sending a message does not require a
separate power supply, and the lightweight, compact and self-contained nature of
the fuse allow for great mobility for the sender of the signal (although electrical
power is still required to receive). Individual pulses from the metallic salts has
extremely narrow spectral widths (0.01 nm) and enables the use of bandpass filters
with the narrowest possible spectral widths (1 nm). These narrow filters allow very
weak signals to be discerned over the background (Scoog et al. 2007). However,
reliable transmission using any communication system requires the development
of methods to overcome the noise in transmission, which is itself a function of the
system. Over the past half century, various error-correcting codes (Peterson &
Weldon 1972; Cover & Thomas 1991; Wicker & Bhargava 1994; Cohen et al.
1997; MacKay 2003; Mitzenmacher 2009) have been developed and allow for
the possibility of accurate signal recovery with minimal loss of information
density, for both binary and non-binary systems. In its most elemental form,
error correction is accomplished by including redundant check bits that convolve
the positions and values of each bit in the signal in a simple manner. While
binary communication schemes are the most commonly studied (Hamming 1950;
Peterson & Weldon 1972), non-binary alphabets (where each bit can attain one of
N possible values) may increase the efficiency of these redundant bits in correcting
errors (Mitzenmacher 2006, 2009) at the cost of introducing further complexity in
both encoding or correction. Here, we focus our attention on the infofuse that uses
a triplet code of pulses with a bit taking on N = 7 possible values and develop a
simple error-correcting code tailored to correct the errors that take advantage of
the inherent non-binary nature of the system (Mitzenmacher 2006, 2009; rather
than the N = 2 binary signals in common digital communication approaches). The
coding scheme introduces redundancy in the transmitted signal, with a message
of length n + m transmitted to communicate an intended signal of length n using
m redundant check bits. Our approach, which combines theory and experiment,
shows that this code can recover the intended sequence with near certainty, given
some simple but reasonable assumptions about the distribution of insertion errors.
We further show that using a pair of thresholds, dividing the data into ‘clear’ and
‘indeterminate’ peaks can increase both the reliability of recovery and reduce the
computational complexity of the algorithm. Finally, we show that for the infofuse
with a bit taking on N = 7 possible values, we achieve a good balance between
the length of the fuse required to send a message and the efficiency (the ratio
n/(n + m)) of the error correction.

2. The infofuse

(a) The experimental system

Infofuses (Thomas et al. 2009) are strips of a flammable polymer (nitrocellulose)
patterned with spots of thermally emissive salts. An ignited infofuse supports
a flame front that propagates along the strip at a roughly constant velocity
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and successively ignites each spot in turn, thereby emitting optical pulses in
time. Infofuses use three distinct alkali metals with very sharp emission spectra:
potassium (K, at 766.49 nm), rubidium (Rb, at 780.03 nm) and caesium (Cs, at
852.11 nm; Ralchenko et al. 2010). The nitrocellulose strips are of the order of 2
to 3 mm wide, and 0.1 mm thick. The speed of the flame front as it propagates
along the fuse depends strongly on the fuse width, but is generally in the range
of 1–3 cm s−1. The emission from each of the chemical spots is observed by a
telescopic receiver that monitors the emission midpoint of each element. For a
sharply defined flame front propagating along a thin fuse, the separation between
the applied spots must be larger than the width of the flame, else two spots
will ignite simultaneously (which will prevent the transmission of the message).
Variations in the shape of the flame front, the finite width of the fuse and non-
uniformities in the nitrocellulose will require a yet larger separation between peaks
to enable reliable communication. In our experiments, the observed light pulses
have a duration of about 100 ms (approx. 0.3 mm wide), and the spacings between
subsequent chemical spots are of the order of approximately 1 cm. This separation
is significantly larger than the 2–3 mm flame front, and we do not find significant
overlap between the emissions from individual spots experimentally.

The detector has excellent range, and clear signals are obtainable from more
than 500 m away (with an estimated 1.4 km maximum range). Signals sent within
the laboratory (close range of approx. 20 m only) allowed four to five pulses per
fuse before falling out of the range of view of the telescope, so long messages
sent within the laboratory were broken into multiple fuses. In order to simulate
the effect of outdoor conditions for experiments in the laboratory, an optical
density (OD) 2 filter was inserted into the telescopic detection device. This
filter reduced the incoming light intensity by approximately 99 per cent and
simulated the conditions of the infofuse being about 10 times further away.
Experiments performed outdoors showed that while detection of the signal was
difficult in direct sunlight, if the infofuse was kept out of the sun, the signal was
sufficiently above background to be detected during the day. For the purpose of
encoding information with these three emitters, we used a scheme that assigns
alphanumeric characters to simultaneous combinations of unique optical pulses
(Thomas et al. 2009): seven (23 − 1) unique optical pulses exist for three distinct
emitters. Each pulse combination is given a numerical value, with K = 0, Cs = 1,
Rb = 2, K–Cs = 3, K–Rb = 4, Cs–Rb = 5 and K–Cs–Rb = 6. Two consecutive
pulses (giving a total of 49 unique pair combinations) are therefore sufficient
to encode each alphanumeric character and some special characters (see the
electronic supplementary material for further discussion). This encoding scheme
was used in experiments in the laboratory (with the OD 2 filter), while outdoor
experiments were intended for benchmarking and did not use an encoded message.

A portable infofuse detection system, in the form of a three-channel hard-
limiter receiver, was implemented for long-distance experiments to verify the
single-threshold encoding/correction algorithm (figure 1). The main modules of
the system consist of three channels of high-sensitivity photo-receivers (PDF10A,
Thorlabs Inc.) and peripheral optics that separate and amplify three spectrum
emissions from the burning infofuse (767, 78 and 852 nm). A custom printed
circuit board is fabricated to perform signal conditioning prior to the error-
correction algorithm. The analogue waveforms from optical receivers are first
scaled to 5 V by a resistive divider, then a tunable eighth-order Butterworth
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Figure 1. Block diagram of portable detection system. (Online version in colour.)

low-pass filter (LPF; MAX7480 from Maxim IC Inc.) with a cut-off frequency
programmed to be around five times the data rate of the infofuse is used to
reduce glitches and spikes in the waveforms. After the LPF, a multi-channel
voltage comparator (TLC3704 from Texas Instruments Inc.) generates event
trigger digital pulses, indicating the existence of certain spectrum emissions. This
is performed by comparing the output from each LPF with a predefined reference
voltage (V1–V3). Each reference is independently adjustable to compensate for
different sensitivities and incident intensities in each optical channel. Because
of the LPF, the spurious fluctuations in the digital output can be reduced.
The digital outputs of the comparators are then transmitted via digital buffers
(MM74C04, Fairchild Semiconductor Corp.) to a high-speed field-programmable
gate array chip for digital signal processing, where an asynchronous algorithm
implements message acquisition and decoding. The algorithm puts the digital
system into standby mode and only wakes it up for data acquisition if the optical–
electrical signal of any of the three photo-receivers crosses the thresholds V1–V3.
In this way, the data-acquisition rate can be automatically adjusted to fit the
speed of burning in the infofuse, thus improving the data-transmission efficiency
and reducing system power consumption. The results of the decoded messages
are displayed on a liquid crystal display (CFAH1604A-YYH-JT, Crystalfontz).
In experiments, both the output from the three-channel receiver and the raw
data from the detector were available, with the raw data being used to analyse
the robustness of the signal detection, particularly in the case of two-threshold
error correction (see below). Although only one bit of information is extracted
from the three channels (corresponding to each wavelength) using this setup, one
could encode more information into the intensity levels of each channel, thereby
increasing the number of states. The detection system can be adapted to discern
multiple intensity levels, either for higher density encoding or to implement
the two-threshold correction system below by adding one more TLC3704 chip
to the system.
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Figure 2. Errors in the infofuse. Salient intended peaks are labelled with an ‘S’, and noise peaks
with an ‘N’. (a) A sample of the errors occurring for the infofuse. Noise peaks at the beginning and
at the end of transmission have a somewhat broader profile in this experiment, but many intended
peak intensities well above background. The intensity of the noise near 2 s is of the order of the
intended peaks near 4.5–5.5 s. Two peaks occur near 5.5 s, with a temporal spacing smaller than
expected. (b) Intended peaks may be difficult to distinguish between noise peaks in both maximal
intensity and intensity profile. The noise peak near 9 s could be considered either an insertion (noise
followed by intended) or permutation (noise and intended giving a K–Rb–Cs signal). (Online version
in colour.)

(b) Errors in the infofuse

In figure 2a, we show a typical sample of the measured intensity of the infofuse
associated with the transmission of the message (in this case, the encoding for
‘tufts’, described further below) as a function of time, with many of the intended
peaks being sharp, well defined (although of variable intensity) and well above
background. However, at the beginning and end of this particular transmission,
the noise is much larger (typically the higher noise initially may be owing to the
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ignition of a match); indeed, decreasing the thresholding level would likely add
spurious additional potassium peaks to the beginning and end of the signal and
produce insertion errors in the signal. In figure 2b, corresponding to the message
we see that the intended peak near 8 s (marked as intended in the figure) has
a temporal profile similar to the other intended peaks, but with a significantly
reduced maximum intensity. This is probably caused either by a misapplication
of the metallic spot (too little potassium), or because portions of the pattern
did not successfully ignite. The intensities of the noise peaks near 8.5 and 9 s are
similar in both intensity and profile to the low intended peak at 8 s, making it
difficult to distinguish between signal and noise. The probable cause of these noise
peaks are non-uniformity in the flame front or inhomogeneities in the fuse, both
of which could delay the ignition of a portion of the applied salt. We note that
increasing the concentration of the salt is expected to have little effect on these
inhomogeneities, and thus would not likely alter the noise observed at 8.5 or 9 s
in figure 2b. Improvements in the accuracy and uniformity of the applied solvent
would likely partially prevent the drastic reduction in the intensity of intended
peaks (as was the case near 8 s in figure 2b), but cannot prevent inhomogeneity in
emission time.

The three peaks near 8.5 s (occurring at 8.3, 8.45 and 8.6 s) have a very small
temporal separation compared with the separation between intended peaks (0.15
and 0.3 s, respectively), and one could reasonably discard the noise peak at 8.45 s
based on its proximity to the other peaks. However, if the spacing between spots
on the fuse was reduced, then such a large temporal threshold would run the
risk of discarding intended peaks as well. The noise peak near 9 s could be
discarded (as well below background), treating it as an insertion error (a K–Rb
peak followed by a temporally very close Cs peak), or merge with the intended
peak (with the intended Cs peak read as a K–Rb–Cs peak). While the particular
values of the thresholds in temporal spacing and intensity will have an effect on
the noisiness of the signal sent by the infofuse, experimentally, we find that the
primary sources of error are associated with the insertion of unintended bits and
possible permutations of intended bits. Importantly, we do not have the problem
of any missing peaks over the range of operation of our receivers, so that we do
not need to worry about deletion errors as we develop a robust error-correction
scheme for the infofuse.

In order to overcome the noise in transmission, a simple solution is to increase
the spacing between the metallic patterns. This will cause all the noisy peaks to
be well separated, so that unambiguously determining the applied chemicals is
virtually assured without confusion owing to neighbouring peaks. However, this
will not only decrease the physical rate of the information transfer, but also the
length of the signals that can be sent (as messages must be encoded on a fuse of
finite length). If we have n intended peaks separated by a distance d0, and the
average flame front velocity is v, then the physical rate is r0 = v/d, with a time
approximately n/r0 required to transmit the message. By increasing the spacing
from d0 to d, we decrease the physical rate of order nd0/d. In figure 2, the temporal
separation between intended peaks is of the order of the width of the chemical
patterning. Increasing the spacing by a factor of 2 will significantly separate
the peaks, simplifying the process of distinguishing between data and noise, but
at the cost of cutting the physical rate in half and doubling the length of the
transmission time.
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Figure 3. Conceptual diagram of error-correcting codes (Shannon 1948; Hamming 1950). Each
intended signal Xi that can be sent will map onto a set of received signals Xi → {Yi} that differ
from the original. By restricting the sent messages to those whose mappings {Yi} do not overlap
for all i, the intended signal can be perfectly reconstructed. If the overlap is small, then the correct
signal can only be recovered with high probability. (Online version in colour.)

An alternative to simply increasing the distance between peaks is to introduce
a self-correcting code into our encoding for the infofuse, which will allow the
correct signal to be reconstructed in the presence of noise. Such a code will be
preferable to simply increasing the distance between peaks if it is more efficient
(i.e. allows a message to be reliably sent at a higher rate). A variety of error-
correcting codes have been developed to allow the recovery of a noisy signal under
differing noise conditions. In a perfect world, an error-correcting code would be
designed so that any code word sent could not be confused for any other possible
code word, regardless of the errors that occur (figure 3). The classic Hamming
(Hamming 1950; Cover & Thomas 1991) or Golay (Cohen et al. 1997) codes, the
more commonly used Reed–Solomon codes (Wicker & Bhargava 1994) or the more
modern and extremely high rate low-density parity check (LDPC) codes (Gallager
1962; MacKay 1999) allow the correction of up to a fixed number of permutation
errors �(h − 1)/2� (with h the minimum or Hamming distance of the code), with
100 per cent probability. All of these codes are effectively implemented for the
correction of permutation errors, where the intended bit value di may be permuted
via channel noise into an unintended value d ′

i . However, experimentally, we find
that the infofuse suffers from insertion errors (where bits may be added to the
signal; figure 2), which cannot be handled using these well-known codes. While
error-correcting codes that address insertion or deletion errors have been studied
(Tenengolts 1984; Klove 1995; Davey & MacKay 2001; Drinea & Mitzenmacher
2007; Mitzenmacher 2009) from a variety of approaches, many are not optimally
adaptable to non-binary codes. LDPC codes, which are extremely efficient for
long signals, are somewhat inappropriate for the short signals that must be sent
via the infofuse, owing to the physical constraints on the length of the fuse.
Additionally, codes that are capable of correcting insertions and deletions, while
only insertions are observed experimentally, are expected to be less efficient than
a code that focuses solely on insertion errors.
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3. Coding scheme

(a) Check bits

We wish to develop a simple scheme that uses the non-binary nature of the
infofuse to correct an arbitrary number of errors with high probability (MacKay
1999). As seen in figure 2a, if we choose a single, sufficiently low-intensity
threshold, we can be certain of correctly including all data peaks, but must
accept that some noise peaks will be inserted. Alternatively, if we choose a pair
of thresholds with one sufficiently high, we can be sure that all noise peaks are
excluded from the signal, but some data peaks may be excluded as well. These
dropped data peaks will join a set of indeterminate peaks: intensity peaks which
clearly indicate that there was some chemical present (well above background),
but whose intensities are not high enough to be deemed ‘clear’ data peaks. In this
case, the receiver must be able to accurately determine which of the indeterminate
peaks were intended, and which are noise.

To allow error correction in the infofuse, the sender and receiver must agree
on the number of data bits, n, and the number of check bits, m, beforehand. The
check bits are chosen to convolve both the position and the value of each data
bit in a unique way, with the first N − 1 bits of the form

ck =
∑

i

ik−1di mod N , (3.1)

where di is the data bit value at the ith position and N = 7 is the number of
possible bit values. This simple form for the check bits is suboptimal in many
respects, but has the merits of clarity, simplicity and flexibility (see electronic
supplementary material for further discussion). It is not difficult to see that the
probability of a randomly chosen sequence producing a given set of {ck} is pfail =
N −m (similar to the discussion in §8 of Mitzenmacher 2009). This exponentially
decaying probability will allow the determination of a robust error-correcting
code. Below, we describe the correction scheme for insertion errors (see electronic
supplementary material for discussion of permutation errors). While codes that
have the ability to correct a single insertion or deletion error with 100 per cent
probability convolve data and position with two constraints (Tenengolts 1984;
Sloane 2002), we will see the use of multiple check bits and large-alphabet (N =
7) encoding allows us to correct an arbitrary number of insertion errors with
high probability. We note that the advantages of non-binary communication do
not depend on the use of an infofuse in particular, but could be applied to any
communication system with many states per bit.

(b) Single-threshold correction

If a single-intensity threshold is used (figure 2), the received signal will be
a combination of all n + m data and check peaks, as well as k ≥ 0 noise peak
insertions. Our error-correction method will fail if a bit is truly deleted, but by
choosing a sufficiently low threshold, we are able to ensure that all intended
peaks are accurately recovered. However, this restriction is counterbalanced by
the efficiency of our code (see below) that does not require the need to correct
errors where an intended bit is deleted. For the moment, we assume the m check

Proc. R. Soc. A (2012)

 on March 28, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Robust error correction in infofuses 369

1.0

increasing insertion (p)(a)

0.8

0.6

0.4P
re

c

0.2

0

p = 0.15

p = 0.2
p = 0.1p = 0.05

increasing indeterminate (q)(b)

0 20 40 60
m

80 1000 20 40 60
m

80 100

q = 0.01

q = 0.25

q = 0.5

q = 0.75

q = 1.0

Figure 4. Recovery probability for insertion errors. (a) Shows Prec as a function of the number
of check bits m for varying insertion probability p, all with n = 250 (solid, p = 0.05, dashed
0.1, dotted 0.15 and dashed-dotted 0.2). The large circles are centred on the asymptotic value
of m = nHN (p)/(1 − p), whereas the large squares are centred on the higher order solution in
equation (3.3). (b) Shows the recovery probability using a pair of thresholds with p = 0.2 and
n = 250 for varying m and q (q being the probability of an intended peak found below the clear
threshold). Shown are q = 0.01 (solid line), 0.1 (dashed line), 0.25 (dotted line), 0.5 (dashed-dotted
line) and 1 (black points). q = 1 is identical to the p = 0.2 curve in (a). Large circles denote the
predicted midpoint value m0 in equation (3.5). (Online version in colour.)

bits are perfectly recovered, an unrealistic an severe approximation that will be
discussed in detail below. The possibility of permutation errors is also neglected
here (see electronic supplementary material for further discussion). In order to
model the noisy transmission, we assume a uniform probability p that a noise
peak is inserted following any observed peak in the data block. The number
of insertion errors observed in the system then has the distribution Pins(k) =(n+k+1

k

)
pk(1 − p)n , giving 〈k〉 = np/(1 − p), with a variance 〈k2〉 − 〈k〉2 = np/(1 −

p)2. A receiver who finds a signal with n + k peaks can simply determine all
possible subsequences of length n and compare the received check bits with the
computed values (where the final m bits are assumed correct, see below for further
discussion). There will be

(n+k
n

)
such sequences, so long sequences with multiple

errors have an extremely high computational cost. The probability of recovering
only the correct signal given k insertion errors is Prec(k) � (1 − N −m)(

n+k
n )−1, and

the total recovery probability (i.e. the probability that a single, unique sequence
is recovered) is

Prec �
∞∑

k=0

Pins(k)(1 − N −m)(
n+k
n )−1. (3.2)

The recovery probability as a function of m is shown in figure 4, and it is
clear that Prec is sigmoidal in nature and increases rapidly beyond the midpoint
of the transition. Equation (3.2) incorporates the total number of possible trial
sequences rather than unique trial sequences (neglecting any correlations between
the trial sequences), and thus will underestimate the probability of recovery.
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A sequence containing the average number of insertion errors, k = 〈k〉 =
np/(1 − p), will require

(n+k
n

) ∼ exp[nHe(p)/(1 − p)] trial sequences, where
He(p) = −p ln(p) − (1 − p) ln(1 − p), similar to the binary entropy function
(Cover & Thomas 1991). Because of the exponential growth of the computational
complexity of the code, in practical implementations, we must choose the
number of data bits n, such that the number of expected trial sequences is
not too large. We expect the number of errors to scale as k0 ≈ 〈k〉 = np/(1 − p),
with higher order corrections scaling as dk0 ∝ √〈k2〉 − 〈k〉2 ∼ √

np/(1 − p), where
the proportionality constant is of order unity. It is not difficult to see that

Prec(k0 + dk0) ∼ 1 − e when m = m0 ∼ − logN [1 − (1 − e)(
n+k0+dk0

n )
−1], yielding

m0 ∼ n
HN (p)
1 − p

− √
n

logN (p)
√

p
1 − p

+ g(n, e)

and

HN (p) = −p logN (p) − (1 − p) logN (1 − p),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

with g(n, e) an undetermined function satisfying g(n, e)/
√

n → 0 as n → ∞. g can
in principle be determined numerically, but is analytically difficult to determine
directly. This argument determines the number of check bits required to recover
from k0 + dk0 errors with high probability, and essentially estimates the number
of errors that may occur while the overlap in output sequences remains small
(as shown in figure 3). The asymptotic values of m are shown in figure 4a for
various values of p, and the leading order term in n roughly coincides with the
midpoint of the transition between low and high recovery probability. As n → ∞,
the dominant contribution to m will be the number of check bits required to reach
the transition.

(c) Higher rates using multiple thresholds

Improved recovery statistics can be attained by using a pair of thresholds,
dividing the signal into clear, indeterminate and background ranges. Peaks in
the indeterminate range will be a mix of intended peaks and noise peaks, and the
error-correction scheme must be able to distinguish between the two. As was the
case for the single threshold, it is essential that the noise threshold is low enough
that we can be certain that all intended peaks are detected. Likewise, we assume
the threshold Icut is chosen sufficiently high so that no noise peaks ever fall into the
clear range, else our coding scheme would fail. The receiver will find n − l clear
peaks, as well as k + l indeterminate peaks (with l the number of intended peaks
that are considered indeterminate and k the number of insertions). In order to
recover the intended signal, all possible sequences of length n containing all n − l
clear peaks and l of the indeterminate peaks can be generated, and compared with
the check bits. Again, this decoding scheme has high computational complexity
for long, noisy signals, with

(k+l
l

)
trial sequences being generated. However, the

number of trial sequences using a pair of thresholds is strictly less than that when
a single threshold is used.

We assume that the probability of an intended peak being considered
indeterminate is uniform with probability q, and maintain the stringent
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assumption that all m check bits are perfectly recovered. The probability of
recovering the intended signal uniquely is then

Prec =
∞∑

k=0

n∑
l=0

Pins(k)Pdel(l)(1 − N −m)(
k+l
l )−1, (3.4)

with Pdel(l) = (n
l

)
ql(1 − q)n−l and Pins(k) the uniform probability of insertion.

Equation (3.4) counts all possible trial sequences, not just unique trial sequences,
and thus underestimates the probability of recovery. The average number of
indeterminate peaks will be 〈k + l〉 = nq + np/(1 − p), and we can perform
the same analysis as in the single-threshold case to estimate the number of
bits required,

m0 ∼ n
1 − p

[
(p + q − pq) logN

(
p

1 − p
+ q

)
− p logN

(
p

1 − p

)
− (q − pq) logN (q)

]

+ O(n1/2). (3.5)

Equation (3.5) is equivalent to equation (3.3) if the probability of dropping
an intended peak q = 1, and decreases with decreasing q. In figure 4b, we see
that for fixed insertion probability p, the recovery probability has a sharper
transition for far lower m as q decreases (see electronic supplementary material,
figure 1 as well). For decreasing q, the indeterminate error correction becomes
more reliable than the insertion correction. A pair of thresholds not only
decreases the computational complexity, but also greatly increases the reliability
of communication.

(d) Meta-check bits

In our determination of the number of check bits required to correctly recover
the intended sequence, we have thus far made the stringent assumption that
the check bits are perfectly recovered. The results presented above can be used
with minimal modification if we can be sure of recovering the check bits with
high probability. This immediately suggests the use of meta-check bits, which
perform the same redundancy on the check bits that the check bits perform on
the data. The meta bits will have the form c′

k = ∑
i i

k−1ci mod N , much similar
to equation (3.1). Each of these meta-check bits can suffer from insertion or
indeterminate errors as well, so an additional set of bits must be used to check
all meta bits as well. The multi-layered level of protection can be continued
indefinitely (discussed further in the electronic supplementary material), allowing
for an iterative protection scheme ensuring reliable recovery.

In the limit of large n, the kth meta-check block will require mk/n = (m0/n) ×
(mk−1/n) bits (with m0 given in equations (3.3) or (3.5)), i.e.

m ∼ n
∞∑

k=1

(m0

n

)k = n
m0

n − m0
, (3.6)

with the rates R = n/(n + m) = 1 − m0/n of these codes shown in figure 5.
The rate vanishes at a finite value of p for all q, owing to the fact that a
sufficiently noisy transmission would require m0 > n. At worst (with q = 1 in

Proc. R. Soc. A (2012)

 on March 28, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


372 G. Morrison et al.

1.0

1.0

0.8

0.8

0.6

0.6

0.4

R

p
0.4

0.2

0.20

Figure 5. The predicted information rate using meta-check bits from equation (3.6). Shown is the
rate in the indeterminate channel with q = 0.25 (empty triangles), 0.5 (filled triangles), 0.75 (empty
circles) and 1.0 (filled circles) for N = 7. q = 1.0 is equivalent to the single-threshold corrector. The
filled black squares show the rate for q = 1, but for the binary N = 2, and the empty black squares
show the rate for the trinary encoding with a division of bits into bytes of length b = 2 (Nbyte = 9).
Both these clearly display the increased efficiency of large alphabet encoding. (Online version in
colour.)

the single-threshold case), the rate vanishes at pmax ≈ 0.68. Interestingly, for a
binary channel with N = 2, we find pmax ≈ 0.22, showing the increased efficiency
owing to the non-binary coding. The indeterminate error-correction scheme has
an even higher rate as q (the probability of an intended peak being considered
indeterminate) decreases.

It is worth noting that an alternative to our large alphabet encoding (N = 7)
could be replaced with a binary or trinary system of individual peaks (i.e. K = 0,
Cs = 1 and Rb = 2), which are grouped together in bytes of length b. Using three
elements, each byte can attain Nbyte = 3b states, so it is useful to determine the
efficiency of our error-correcting code using such an encoding system. A system
that uses b = 2 (i.e. Nbyte = 9) would still require a pair of bytes to represent an
alphanumeric character, but would require twice as many peaks as the N = 7
case to send the message. Equation (3.3) can be adapted in a straightforward
fashion, and we find that pmax ≈ 0.59 < 0.68 for the byte-wise trinary signal. Such
a method is thus less efficient than the large alphabet encoding used, despite the
fact that Nbyte = 9 > N = 7, both in the expected rate of the code (figure 5), as well
as in the required fuse length to send a message (b = 2 transmission would require
twice the length of fuse to send the same signal). Bytes grouped with b ≥ 3 do
allow a higher information rate than the large alphabet N = 7 encoding, but are
more inefficient in terms of fuse length (with a b = 3 encoding having pmax = 1 but
requiring 1.5 times the number of bits to send the message). The large alphabet
encoding presented here thus strikes an excellent balance between length efficiency
and error-correction efficiency, important in the context of infochemistry.

4. Experimental results

In order to test the applicability of our coding scheme to the experimental system,
we sent the signal ‘tufts’ 19 times using three check bits and one meta-check bit
(14 total bits, with a rate n/(n + m) = 0.71, the encoding scheme is presented in
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the electronic supplementary material). The intended signal is 10220010010441,
and translates to ‘tuftsiz’ with the four additional error-correcting bits. For each
experiment, the intensity of each channel (K, Rb and Cs) was rescaled by the
maximum intensity. Each message was decoded from the raw data with a noise
threshold of at least Inoise = 0.12Imax for all experiments. However, if more than five
insertion errors were detected (the received signal comprised more than 19 bits),
the noise threshold was increased to Inoise = 0.15Imax to reduce the number of
detected errors. In most cases, the threshold of Inoise = 0.12Imax was unnecessarily
low, but there were some experiments where the intensity of an intended bit was
of the order of this threshold).

This threshold was applied to all experiments to be absolutely certain that
all data peaks would be included. A higher threshold would have produced
fewer channel errors by ignoring more of the inserted peaks, so error correction
with this threshold demonstrates a worst-case scenario. Peaks were considered
to occur simultaneously if their maxima were within 0.08 s, and peaks separated
by more than 0.11 s from both of their nearest neighbours would be included in
the returned sequence (with all other peaks discarded as noise). The temporal
thresholding is also lower than is strictly necessary, as the average spacing
between intended peaks is approximately 0.3 s. The use of a lower threshold
again ensures that no intended peaks are dropped at the cost of additional
insertions or permutations. Using these thresholds with the time trace shown
in figure 2, we recover a signal with five insertions and one permutation
error: 0102200100104040063. Using a pair of thresholds, we recover the signal
010220010010404036, where bold-faced numbers correspond to intensities above
Icut, and therefore are assumed intended (but possibly permuted), and the other
numbers are peaks with intensities between Icut and Inoise.

There are a variety of improvements that can be made in the signal processing
to reduce the number of errors in the received signal. Although not implemented
here, improvements can be made on the detection of clear and indeterminate
peaks by using energy-averaging or matched filtering of the signal (J. Kusuma
2011, personal communication). Many spurious peaks are detected by searching
for local maxima in the intensity profiles (the method we use in this paper),
only some of which can be discarded as spurious using a temporal threshold.
By integrating the intensity over M time windows Jk = ∫t0+(k+1)T

t0+kT I(t) (where I =
(IK, ICs, IRb) is the vector of intensities), the spurious local maxima will have a
reduced impact on the final digitized signal. The correct values of T and t0 must
be selected via an optimization procedure for each fuse, as small variations in the
flame front velocity can alter T . We note that if two intended peaks are found
within the same time interval T using the integrated signal, a deletion error would
have occurred in the received signal (as the maximum number of peaks is M ). Our
error-correcting code will fail if such a deletion error occurs. The advantages and
disadvantages of alternate methods of digitizing the signal (perhaps requiring
different methods of error correction) are not clear when compared with the
approach presented in this paper.

Because of the limited field of vision of the telescopic detector over short
ranges, the signal was divided into three fuses, with five, five and four bits,
respectively. This led to increased separation between blocks of bits (figure 2a).
The very limited range of temporal cutoffs (a range of 0.03 s for discarding peaks
as noise) suggests that this increased spacing does not significantly alter the
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Figure 6. The error correction of the message ‘tufts’, using three check bits and one meta-check
bit (n = 10, m0 = 3, m1 = 1). (a) Shows the recovery using the Icut = 0.6Imax and (b) shows the
recovery using Icut = Imax. Both include the results correcting for 0, 1 and 3 permutation errors.
Upward slashes denote failed recovery, downward slashes denote unique recovery and horizontal
slashes denote multiple-recovered sequences. Shown are only those sequences that gave fewer than
2 × 104 unique trials, which excludes seven (14%) of the attempts from (b). (Online version in
colour.)

noise statistics. When the two thresholds were used, the threshold for clear peaks
was set to Icut = 0.5Imax (figure 6b). In all cases, we first tried to correct the
signals without regard for permutation errors, but often found that the signal
was not accurately recovered. We then corrected for a single permutation error
(see electronic supplementary material for discussion of permutation correction),
which ensured the recovery of the correct sequence in all experiments.

In figure 6, we show histograms of the results of the error correction, using
a single (figure 6a) or pair of thresholds (figure 6b). In both, we show the
results when correcting for both zero and one permutation error in the same
histogram. We divide the experimental results into attempted recoveries for which
no trial sequences satisfied the check bits (upward slashes), those that recovered
a unique sequence (downward slashes) and those for which multiple sequences
were recovered (horizontal slashes). This histogram is plotted as a function of
the number of unique trial sequences generated, rather than the

(n+k
n

)
sequences

expected from the random coding arguments above. The average results are also
listed in table 1. We note that in all but one case, if any signals were recovered
one of them was the intended ‘tufts’; however, other spurious matches were
possible. In all cases, where the unique sequence was not recovered, a permutation
error had occurred but was uncorrected. In general, the number of unique trial
sequences generated using a pair of thresholds was lower than the number using
when a single threshold was used. This is owing to the additional information
created by labelling some peaks as ‘certainly’ intended, and greatly reduces the
computational complexity of decoding.

In figure 6, all occurrences of zero-recovered sequences corresponded to at
least one permutation error occurring. Correcting permutation errors can greatly
increase the number of trial sequences that must be sampled, and increases the
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Table 1. Summary of the recovery statistics using one or two thresholds. The first column shows
the number of permutation errors corrected, the second column the geometric mean of the number
of unique trials generated, the third the fraction of trials that found the correct sequence and
the fourth the average number of returned sequences. Without correcting for permutation errors,
the correct sequence was recovered at best 58% of the time, but false positives were very rare
(〈correct〉 ≈ 〈recovered〉). The correct message was recovered for all experiments if one permutation
error was corrected, and slightly increased the number of false positives (〈recovered〉 > 1).

permutations trials 〈correct〉 〈recovered〉

recovery statistics with two thresholds
0 33.9 0.58 0.58
1 202 1.0 1.16

recovery statistics with one threshold
0 192 0.84 0.89
1 883 1.0 1.53

probability of finding more than one recovered sequence. The unique intended
signal ‘tufts’ was recovered as long as the number of unique trial sequences was
less than 3418 (giving rise to three matches), while at worst five sequences were
recovered (the intended and four spurious matches) for 21 015 unique trials. The
largest number of trial sequences that resulted in a unique (and correct) match
was 4207. This shows the importance of correlations in the trial sequences, as for
a randomly drawn set of trials, we would expect the probability of recovering a
unique match as Prec < (1 − 7−3)4207 ≈ 5 × 10−6 (see equation (3.2)). The random
coding argument presented above significantly underestimates the probability of
recovery, and the surprisingly small number of recovered sequences given the
number of trial sequences shows the importance of correlations between trial
sequences. It is worthwhile to note that even in cases where multiple sequences
satisfy all of the check bits, the error-correction scheme still produces a drastic
reduction in the number of possibly intended messages. In the worst case, with
21 000 trial sequences, the five recovered messages translate to ‘tufts’, ‘saets’,
‘saosr’, ‘tess3’ and ‘_efs∗’. While it is clear that the possibility of multiple spurious
matches is a limitation of our coding scheme, it is equally clear that the 21 000
possible sequences are reduced to a set of five, for which the english message is
clearly distinguishable.

5. Conclusions

We have presented a relatively simple method for error correction for messages
sent via a burning fuse patterned with metallic salts. Our coding scheme depends
on the experimentally observed noise properties of the system: while noise peaks
may cause insertion or indeterminate errors (by being indistinguishable from data
peaks), no information is truly lost from the system. Even with the simplest
possible representation for the redundant error-correcting bits (see electronic
supplementary material), the experiments show that our correction scheme is
able to recover the intended signal in the presence of noise with high probability.
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By introducing layering in the error correction, in the form of the meta-check bits,
it is possible to achieve arbitrarily high probability of signal recovery, assuming
that errors are sufficiently rare. A random-coding argument shows that there
is an achievable, finite rate for error correction in an idealized infofuse system.
However, the experiments show a much higher probability of recovery than would
be expected given the random coding argument, owing to the correlations in
trial sequences.

The highly efficient nature of the code is due primarily to the non-binary
nature of the encoding in the infofuse. A binary or trinary signal can be encoded
by grouping bits into bytes of finite length in order to produce a large number
of states per byte, but has an associated cost in increasing the required length
of the signal. We have seen that not only does byte-wise trinary communication
require effectively doubling the length of the signal, but also that the increase
in the average number of errors reduces the efficiency of the code in comparison
with a large N bit-wise coding. It is worthwhile to note that this code could be
applied to a system where a larger N is used for encoding, such as increasing
the number of emissive salts used in the preparation of the infofuse. Likewise,
higher information density could be achieved by using the concentration of salts
in each spot to encode information (Thomas et al. 2009). While the choice of
appropriate thresholds could be more difficult in this situation, we expect that
increasing the alphabet size will give an increase in the efficiency in the code
(Mitzenmacher 2006).

The particular nature of the noise observed in the infofuse, coupled with
the great advantages in large N encoding, suggests that there may be great
advantages in certain cases in chemical communication. One can envision a
multitude of physical or chemical systems in which the number of ‘bits’ can
represent many states (large N ) in a novel form of communication. For each,
all that remains is a more complete understanding of the errors caused in
transmission, and how to design an error-correcting code that takes advantage of
the noise characteristics for each. In some cases, the many well-developed codes
designed for binary communication may be adaptable or immediately applicable,
but new techniques may be required to fully use the advantages of each system
while simultaneously overcoming the inherent disadvantages in the same.

We gratefully acknowledge useful conversations with J. Kusuma regarding methods of digitizing
the signal.
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