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How many data are sufficient for accurate and precise statistical analysis? There is no 

hard and fast answer to this question, but Figure S1 gives an impression of how the 

number of data affects the statistical analysis of that data.  Figure S1 shows the results of 

a simulation: i) starting with N = 3, N data were sampled from a (computer generated) 

normally distributed population with mean zero and standard deviation unity, ii) the 

arithmetic mean (µA) and standard deviation (σA) of the sample were calculated, iii) steps 

i and ii were repeated in 1000 trials, after which the average value of σA for N = 3 was 

plotted in Figure S1A and the fraction of trials in which the interval (µA − σA, µA + σA) 

contained zero (the true population mean) was plotted in Figure S1B, and iv) steps i – iii 

were repeated for N = 4 – 20.  The implication of Figure S1A is that small samples tend 

to underestimate the true standard deviation of the population, while the implication of  
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Figure S1: The effect of sample size on the accuracy of a measurement taken from a 

normally distributed population with a mean of 0 and a standard deviation of 1.  (A) The 

sample (measured) standard deviation as a function of the sample size.  Each point is the 

average of 104 measured standard deviations, and the error bars represent one standard 

deviation from that average. The dashed line indicates the actual standard deviation of the 

population being measured.  (B) The probability that the actual mean of the population 

lies within one sample standard deviation of the sample mean.  This probability is plotted 

as a function of sample size.



  



Figure S1B is that, for small sample sizes, the sample mean, µA, is frequently far from the 

actual population mean.  For samples with fewer than 10 data, these effects can be 

significant.  The value of collecting more than a few measurements is, therefore, 

apparent.  

 

The Normal Distribution, the Log-normal Distribution, and Other Statistical 

distributions.  The statistical distribution of a random variable X is specified by a 

function (the probability density function, or pdf) that gives the probability, p(x) of 

observing a particular value (x) of X, as a function of that value.  Probably the most 

common statistical distribution is the normal distribution, an example of which is shown 

in Figure 3A in the main text, and whose pdf is given in eq. 2, also in the main text.  For a 

true normal distribution, the Gaussian mean, median, and arithmetic mean are all equal, 

as are the Gaussian standard deviation, the adjusted median absolute deviation, and the 

arithmetic standard deviation.  The former values indicate the center of the peak, while 

the latter values give an impression of the width of the peak. 

 The log-normal distribution is related to the normal distribution.  If the variable X 

is normally distributed, then the variable Y = eX is an exponential function of a normally 

distributed variable.  The transformed variable logY = X is, therefore normally 

distributed.  Thus, Y is said to be log-normally distributed.  In the same way, if d (in the 

Simmons model; see main text, eq. 1) is normally distributed, then since J depends 

exponentially on d, J is log-normally distributed.  

 



Histograms. A histogram is a method for plotting a sample of values in order to observe 

the statistical distribution of that sample and, hopefully, to infer something about the 

distribution of the underlying population. When analyzing any relatively large dataset, 

the histogram is one of the most fundamental and useful tools available. Histograms are 

useful for visualizing the shape of a particular distribution, and for comparing the shape 

of the experimental (measured) distribution against a statistical model.   

To construct the histograms in Figures 2, 3, and 5 of the main text, we i) partitioned 

the range covered by the distribution into bins, ii) assigned each value in the distribution 

to the bin that included that value, and iii) plotted the number of values in each bin 

against the location of the center of the bin.   

While it is not necessary to plot a histogram of a sample in order to calculate the 

median or the arithmetic mean of the sample, plotting a histogram is still useful, 

especially with large samples, for performing a visual check of the shape of the 

distribution.  For determining the Gaussian mean, on the other hand, constructing a 

histogram is necessary, because the fitting algorithm uses the histogram as the object to 

which it fits a Gaussian function.  Choosing the number (or width) of bins in the 

histogram can have an effect on the Gaussian mean, but unless the number of bins is very 

small (< 10) or very large (approaching or exceeding the number of data in the sample), 

then this effect is probably negligible.  There is no standard rule for choosing the number 

of bins in a histogram, but some have suggested that, over the range of data in the sample, 

the number of bins should be approximately the square root of the number of data in the 

sample.  We have chosen, for consistency, to plot all of our histograms with 10 bins per 

unit of log|J| (i.e. ~ 40 bins covering the bulk of the data for most samples). 



 

Details of Fitting Gaussian Functions to Histograms of log|J|. We used the curve-fitting 

tool in MATLAB 7.10.0.499 (R2010a).  This tool is used by calling the function “fit()” 

from the command line, and selecting ‘gauss1’ (i.e. one Gaussian peak) as the model to 

fit.  The options we used are the standard options in MATLAB for the ‘gauss1’ model: no 

excluded data, no weights, no bounds for the mean, a lower bound of zero for the 

standard deviation, no “robust” fitting options selected, and a trust-region-reflective 

algorithm (this algorithm was recommended, but the Levinberg-Marquardt algorithm 

gave similar results).  The first parameter determined by the fitting algorithm specifies 

the area under the curve (we ignored this parameter, because it is specific to a sample, 

and not a general characteristic of the population), the second parameter is the Gaussian 

mean (µG), and the third parameter must be divided by the square root of two, in order to 

find the Gaussian standard deviation (σG).  The coefficients of determination, R2, for the 

fitted Gaussian functions for n = 9 – 18 are given in Table S1. 

 

Calculating Quantiles.  For a sample, in which N values of x are sorted in increasing 

order, the q quantile is the ith value of x, xi, where i = q(N+1), if i is an integer.  If i is not 

an integer, then if j = integer(i) (i.e. if j is i rounded down), then the q quantile is xj + 

q(xj+1 − xj).  In other words, the q quantile is linearly interpolated from the sorted values 

of x. 

 

Values of Confidence Intervals for µG, m, and µA.  In the main text, we explained how 

to calculate confidence intervals for estimates of the locations of samples of log|J|.  We  



 
 
 
Table S1. Coefficients of Determination for Gaussian Fits to Histograms of log|J| for 

S(CH2)n-1CH3 

 

 n     R2 

  9 0.6986 

10 0.6438 

11 0.7191 

12 0.7222 

13 0.6973 

14 0.7887 

15 0.7544 

16 0.8177 

17 0.7798 

18 0.7845 

 

 

 
 

 



plotted the 99.9% confidence intervals on the Gaussian mean (µG), median (m), and 

arithmetic mean (µA) in Figure 7, and here, we give the numerical values of those 

confidence intervals in Table S2. 

 

Using Confidence Intervals to Calculate p Values for Statistical Tests. The confidence 

interval on the value of β determined by the regression line on a plot of log|J| vs. n is 

given by eq. S1. 
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                                       (S1) 

Neff is the effective sample size, defined by equations 6 and 7 in the main text.  As 

explained in the main text, this type of confidence interval corresponds to the Z-test.  The 

confidence interval corresponding to the t-test, which performs better than the Z-test, 

could be obtained by replacing zα/2 (the inverse of the standard normal cumulative 

distribution function, evaluated at 1 − α/2) with tN−2,α/2 (the inverse of the cumulative 

distribution function for a t-distribution, with N − 2 degrees of freedom, evaluated at 

1 − α/2).  Since tN−2,α/2 ≈ zα/2 for large N, the Z- and t-confidence intervals are 

approximately equivalent for our samples.  In eq. S1, the numerator can be conceptually 

understood (via a rough analogy) as the standard deviation of the residuals (the 

differences between the measured values of log|J| and the fitted function).  With this 

understanding, the confidence interval for β bears a formal resemblance to the confidence 

interval for the Gaussian mean, given by eq. 5 in the main text.  The main conceptual 

difference is that the denominator also contains the variance of all values of n (the 

molecular length), to account for the fact that log|J| is supposed to vary as n varies.  



Table S2. 99.9% Confidence Intervals for the Location Parameters Estimated by 

Methods 1 – 3. 

 n    µG     CI(99.9%)     m     CI(99.9%)    µA     CI(99.9%) 

  9 -1.784 (-1.840, -1.729) -1.902 (-1.974, -1.730) -1.990 (-2.074, -1.906) 

10 -1.774 (-1.799, -1.749) -1.910 (-2.015, -1.836) -2.120 (-2.200, -2.040) 

11 -3.234 (-3.321, -3.146) -3.101 (-3.211, -3.022) -3.040 (-3.127, -2.953) 

12 -2.465 (-2.516, -2.415) -2.525 (-2.569, -2.486) -2.540 (-2.624, -2.456) 

13 -3.864 (-3.937, -3.790) -3.855 (-3.974, -3.704) -3.730 (-3.812, -3.648) 

14 -3.695 (-3.751, -3.640) -3.762 (-3.813, -3.713) -4.010 (-4.067, -3.953) 

15 -4.928 (-5.010, -4.845) -4.655 (-4.792, -4.559) -4.450 (-4.572, -4.328) 

16 -4.315 (-4.363, -4.267) -4.324 (-4.388, -4.262) -4.510 (-4.605, -4.415) 

17 -5.815 (-5.841, -5.788) -5.704 (-5.779, -5.613) -5.460 (-5.572, -5.348) 

18 -5.310 (-5.368, -5.252)    -5.255 (-5.306, -5.177) -5.080 (-5.162, -4.998) 

µG is the Gaussian mean (Method 1), m is the median (Method 2), and µA is the 

arithmetic mean (Method 3) 

 



To perform a Z-test (which is approximately equivalent to a t-test, in our case) 

comparing βodd and βeven, it is necessary to calculate the test statistic, Z, using eq. S2. 

                                                 

 

Z =
βodd − βeven

CI βodd( )+ CI βeven( )
                                              (S2) 

 The probability, p, that the null hypothesis (that βodd = βeven) is true, according to the Z-

test, is then given by the standard normal cumulative distribution function, evaluated at Z.  

(For a t-test, one would evaluate the cumulative distribution function for the t-

distribution, with N − 2 degrees of freedom, at Z).   

The confidence interval for log|J0| is given by eq. S3. 

                                          

 

CI log J0( )= zα 2

S ni
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                                               (S3) 

This confidence interval also bears a formal resemblance to eq. 5 in the main text, but it 

includes an extra factor in the numerator.  Because log|J0| is the y-intercept of the fitted 

function, it must be determined by extrapolating from the domain of the data (n = 9 – 18) 

to the y-intercept (n = 0).  The extra factor in the numerator of S3 has the function of 

increasing the width of the confidence interval, to account for the uncertainty of this long 

extrapolation.  The p value for the null hypothesis that log|J0,odd| = log|J0,even| is calculated 

in the same manner as above, using eq. S2.  


