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SUMMARY

Locomotion requires coordinated motor activity
throughout an animal’s body. In both vertebrates
and invertebrates, chains of coupled central pattern
generators (CPGs) are commonly evoked to explain
local rhythmic behaviors. In C. elegans, we report
that proprioception within themotor circuit is respon-
sible for propagating and coordinating rhythmic
undulatory waves from head to tail during forward
movement. Proprioceptive coupling between adja-
cent body regions transduces rhythmic movement
initiated near the head into bending waves driven
along the body by a chain of reflexes. Using optoge-
neticsandcalcium imaging tomanipulateandmonitor
motor circuit activity of moving C. elegans held in
microfluidic devices, we found that the B-type cholin-
ergic motor neurons transduce the proprioceptive
signal. In C. elegans, a sensorimotor feedback loop
operating within a specific type of motor neuron
both drives and organizes body movement.

INTRODUCTION

All locomotory circuits, from invertebrates to limbed vertebrates,

must generate rhythmic activities throughout theirmotor systems

(Delcomyn, 1980;Grillner, 2003;Marder andCalabrese, 1996). To

exhibit coherent gaits such as crawling, walking, swimming, or

running, the rhythmicactivitiesof all bodypartsmustbepatterned

in specific temporal sequences (Delcomyn, 1980; Grillner, 2003;

Marder and Calabrese, 1996; Mullins et al., 2011). Rhythmic

motor activities are typically generated by dedicated neural

circuits with intrinsic rhythmic activities called the central pattern

generators (CPG) (Brown, 1911; Delcomyn, 1980; Grillner, 2003;

Kiehn, 2011; Marder and Calabrese, 1996; Mullins et al., 2011).

Networks of CPGs can be distributed throughout a locomotory

circuit. For example, chains of CPGs have been identified along
750 Neuron 76, 750–761, November 21, 2012 ª2012 Elsevier Inc.
the nerve cord of the leech, and distributed CPG modules have

also been found in mammalian lumbar spinal cord to control hin-

dlimb movement (Kiehn, 2006). In isolated nerve cords or spinal

cords, even after all muscle and organ tissues have been

removed, motor circuits that correspond to different body parts

generate spontaneous rhythmic activity, a fictive resemblance

of the swimmingpatterns inbehavinganimals (CohenandWallén,

1980; Kristan and Calabrese, 1976; Mullins et al., 2011; Pearce

and Friesen, 1984; Wallén and Williams, 1984).

When a chain of CPGs generates autonomous rhythmic activ-

ities, where each CPG corresponds to a different body part,

mechanisms to coordinate their activities must be present.

Sensory feedback often plays a critical role in this coordination

(Grillner and Wallén, 2002; Mullins et al., 2011; Pearson, 1995,

2004). In lamprey and leech, for example, specialized proprio-

ceptive neurons in the spinal cord and body wall modulate the

spontaneous activity of CPGs within each body segment

(Cang and Friesen, 2000; Cang et al., 2001; Grillner et al.,

1984). Activation of these stretch-sensitive neurons, either by

current injection or by externally imposed body movements,

can entrain CPG activity (McClellan and Jang, 1993; Yu and Frie-

sen, 2004). Similarly, in limbed vertebrates, sensory feedback

frommechanoreceptors in the skin andmuscle, working through

interneuronal circuits that modulate the rhythmic bursting of

motor neurons, helps to coordinate limb movements during

step cycles (Pearson, 2004).

Here, we study undulatory wave propagation along the body

of the nematode Caenorhabditis elegans during forward move-

ment (Figure 1A). The worm offers an opportunity to obtain

a complete systems-level understanding of a locomotory circuit.

The adult motor circuit has been mapped at synaptic resolution

(Chen et al., 2006; White et al., 1986). Recent advances in optical

neurophysiology (Chronis et al., 2007; Clark et al., 2007; Fau-

mont et al., 2011; Guo et al., 2009; Haspel et al., 2010; Kawano

et al., 2011; Leifer et al., 2011; Liewald et al., 2008; Zhang et al.,

2007) now make it possible to explore the physiology of this

motor circuit in freely moving animals.

C. elegans locomotion is controlled by a network of excitatory

cholinergic (A- and B-types) and inhibitory GABAergic (D-type)
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motor neurons along the nerve cord that innervate the muscle

cells lining the worm body (White et al., 1976). Earlier cell ablation

studies suggest that B-type cholinergic motor neurons are

specifically required for forward locomotion in L1 larva (Chalfie

et al., 1985). The 11 VB and 7 DB neurons innervate the ventral

and dorsal musculature, respectively (Figure 1). The A-type

cholinergic motor neurons, which are necessary for backward

movement (Chalfie et al., 1985), are similarly divided into the D

and V subclasses that innervate the dorsal and ventral muscula-

ture (not shown in Figure 1).

How the C. elegans motor circuit organizes bending waves

along its body during locomotion is poorly understood. Even

when all premotor interneurons are ablated (Kawano et al.,

2011; Zhenget al., 1999),C. elegans retains theability togenerate

local bodybending, suggesting that themotor circuit itself (A-,B-,

and D-type neurons and muscle cells) can generate undulatory

waves. However, the synaptic connectivity of the motor circuit

does not contain motifs that might be easily interpreted as local

CPG elements that could spontaneously generate oscillatory

activity (e.g., oscillators driven by mutual inhibition between

two neuronal classes that can be found in larger animals) (Fig-

ure 1B). The synaptic connectivity does contain a pattern to avoid

simultaneous contraction of both ventral and dorsal muscles; the

VB and DB motor neurons that activate the ventral and dorsal

muscles also activate the opposing inhibitory GABAergic motor

neurons (DD and VD, respectively). However, this contralateral

inhibition generated by GABAergic neurons is not essential for

rhythmic activity along the body or the propagation of undulatory

waves during forward locomotion (McIntire et al., 1993).

In addition, unlike in larger animals, the C. elegans motor

circuit does not contain specialized proprioceptive or mechano-

sensory afferents that are positioned to provide information

about local movements to each body region through local

sensory or interneurons (Figure 1B). The DVA interneuron has

been shown to have proprioceptive properties (Hu et al., 2011;

Li et al., 2006), but its process spans the whole worm body

and is not required for forward locomotion. The lack of special-

ized sensory neurons within the motor circuit led Russell and

Byerly to speculate that individual motor neurons might them-

selves have proprioceptive properties (White et al., 1986). In

particular, electron microscopy showed that the cholinergic

motor neurons have long undifferentiated processes that extend

along the nerve cord without making synapses. In the B-type

motor neurons, for example, these long asynaptic processes

extend farther posteriorly than do their neuromuscular junctions

(Figure 1C) (White et al., 1986). These asynaptic processes were

hypothesized to represent specialized proprioceptive sensors. If

this is the case, proprioceptive information might be expected to

travel from posterior to anterior in the B-type motor neurons. A

putative mechanosensory channel, UNC-8, is also expressed

in motor neurons (Tavernarakis et al., 1997). However, whether

any motor neuron is capable of proprioception, or how proprio-

ception is used by the motor circuit, has not been demonstrated.

Biomechanical evidence also implies a role for proprioception

in C. elegans locomotion as its gait adapts to the mechanical

load imposed by the environment (Berri et al., 2009; Boyle et

al., 2012; Fang-Yen et al., 2010). When worms swim in low-

load environments, such as water, the bending wave has

a long wavelength (�1.5 body length L). When crawling or swim-

ming in high-load environments�10,000-fold more viscous than

water, the bending wave has a short wavelength (�0.65 L), but

whether or how proprioception might be related to gait adapta-

tion has not been determined.

Here, we examinedwhether thewormmotor circuit has propri-

oceptive properties and how these properties are connected to

undulatory dynamics. We apply microfluidic devices and in vivo

optical neurophysiology to show that proprioceptive coupling

between adjacent body segments constitutes the trigger that
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Figure 1. A Schematic Diagram of the Motor Circuit in C. elegans

(A) Worms undulate by alternating contraction and relaxation of dorsal and

ventral muscle cells lining the body. Dorsal bending is achieved when dorsal

muscle cells contract (filled cells) and ventral muscle cells relax (open cells).

Ventral bending is achieved when ventral muscle cells contract and dorsal

muscle cells relax.

(B) General patterns of connectivity in the wiring diagram for forward move-

ment. Arrows indicate excitatory chemical synapses from the cholinergic

motor neurons (VB and DB). Blunt-ended lines indicate inhibitory chemical

synapses from GABAergic motor neurons (DD and VD). GABAergic neurons

are dispensable for the propagation of the bending wave along the worm body

during forward movement. Dashed lines indicate gap junctions between

neighboring muscle cells and neighboring neurons of each cell type. Six to

twelve neurons of each cell type are distributed along the worm body. The

schematic diagram is based on Chen (2007), Durbin (1987), Haspel and

O’Donovan (2011), and White et al. (1986).

(C) The morphology of DB and VB motor neurons along the circuit. All cell

bodies are located in the ventral nerve cord. The axons of VB motor neurons

have short anterior axons and long posterior axons. The axons of the DBmotor

neurons cross to the dorsal nerve cord with long posterior projections. See

also Figure S6.
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drives bending wave propagation from head to tail. We found

that posterior body regions are compelled to bend in the same

direction and shortly after the bending of the neighboring anterior

region. We localize this form of proprioceptive coupling to the

B-type cholinergic motor neurons. We quantify the spatial and

temporal dynamics of this proprioceptive coupling, and use

our biophysical measurements to calculate its role in undulatory

dynamics. Proprioception in the C. elegans motor circuit,

beyond simply explaining the propagation of an undulatory

wave from head to tail, also provides a quantitative explanation

for gait adaptation to external load.

RESULTS

The Bending of One Body Region Requires the Bending
of Its Anterior Neighbor
C. elegans moves forward on its side by propagating dorsal-

ventral body bending waves from head to tail. The detailed

kinematics of bending waves can be quantified by measuring

curvature k at each point along the body centerline over time

(Figure 2A). To measure k, we first calculate R, the radius of

curvature at each point along the centerline (k = 1/R). To

compare data from different animals, we measure distance

along the worm body as the fractional distance from head to

tail (head = 0; tail = 1), and normalize curvature using L, the total

length of the body centerline (normalized curvature = k 3 L).

During sustained forward movement, each body region alter-

nates between positive and negative curvature, and bands of

curvature propagate from head to tail as shown in a kymogram

(red, positive; blue, negative) (Figures 2B and 2C). Curvatures

measured near the head tend to be larger than curvatures

measured near the tail (Figure 2D).

First, we asked how the motor activity in one body region

might be affected by the bending of neighboring body regions.

To do this, we designed microfluidic devices that immobilized

body regions of varying length (Figures 3A and 3B; Movie S1

available online). Our first device trapped the center of a worm

in a narrow straight channel to keep it from bending without

impeding worm movement either anterior or posterior to the

channel (Figures 3A and 3B). We used a channel diameter

(40 mm) that was sufficient to immobilize the trapped region of

a young adult worm (worm diameter is 54 ± 4 mm; mean ± SD)

with minimum constriction.

We consistently recorded bouts of forward movement (>10 s)

when we immobilized a middle portion of the worm (Figures 3A–

3C). Bending waves would propagate normally to the anterior

limit of the channel (orange data points in Figure 3D). Short chan-

nels (100 mm long) did not affect wave propagation to the tail; the

bending wave that emerged from the posterior limit of the

channel (black data points in Figure 3D) exhibited similar ampli-

tude as a freely swimming worm (Figure 2D). However,

increasing channel length beyond 200 mm significantly dimin-

ished the bending amplitude in the posterior body region (Fig-

ure 3D). Increasing channel length also augmented the bending

amplitude of the anterior body region, perhaps reflecting an

increased effort to escape the channel. Fixing the channel

length, but moving it toward the tail, also reduced the posterior

bending amplitude (Figure 3E).

To determine how immobilization affectsmuscle activity within

and posterior to the channel, we quantified intracellular calcium

dynamics in themuscle cells of transgenic animals coexpressing

the calcium indicator GCaMP3 (Tian et al., 2009) and RFP in all

body wall muscles (Figure S1; Movie S2). In these animals, intra-

cellular calcium levels can be inferred from the ratio of green to

red fluorescence. Whereas muscle cells anterior to the channel

exhibited strong rhythmic calcium dynamics during the propaga-

tion of bending waves, muscle cells within and posterior to the

channel did not (Figure S1). Thus, immobilizing a body region

disrupts the propagation of bending waves by lowering motor

circuit activity within and posterior to that region. The tail was

held rigid and straight in the absence of muscle activity because

of the high internal hydrostatic pressure of worms.

Taken together, these results suggest that immobilizing

a portion of the worm can directly override rhythmic activity.

Motor activity in a posterior region requires the active bending

of an anterior region extending �200 mm.
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Figure 2. Quantification of Undulatory Dynamics

(A) Worm undulatory dynamics is quantified using time-varying curvature

along the body. Points along the centerline of length L can be specified in

terms of fractional distance from the head (head = 0; tail = 1). The radius of

curvature R can be measured at all points along the body. Curvature, k, is the

reciprocal of R. To represent bending in nondimensional units, we calculate

a normalized curvature as k multiplied by worm length L.

(B) Video images of a worm swimming forward. A red-blue colormap illustrates

alternating curvatures at fractional distance = 0.5.

(C) Kymogram of time-varying curvature illustrating retrograde bending waves

along the worm represented in nondimensional units.

(D) Bending magnitude along the body of a wild-type freely swimming worm,

measured as the standard deviation of normalized curvature over time. n = 18

worms, mean ± SEM.
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Figure 3. Bending of Posterior Regions Requires Anterior Bending

(A) Schematic of microfluidic device. a stands for anterior region, p stands for

posterior region, and t stands for trapped region of a worm. PDMS: Poly-

dimethylsiloxane.

(B) Video images of a wild-type young adult worm exhibiting forward undula-

tory gait inside themicrofluidic device (see alsoMovie S1). The channel divides

the worm body into unrestrained anterior, posterior, and trapped middle

regions.

(C) Kymogram of time-varying curvature along the body of the worm shown in

(B). Gray lines mark the anterior and posterior limits of the straight channel.

(D) Bendingmagnitude of a posterior and an anterior body region (�0.15 worm

length) adjacent to the channel, measured as the standard deviation of time-

varying normalized curvature, is plotted as a function of the length of the

trapped region. nR 10 worms for each condition, mean ± SEM. Position of the

posterior limit of the channel is 0.7 ± 0.1 (mean ± standard deviation) for each

condition, measured as the fractional distance from head to tail. *p < 0.05,

***p < 0.001, Mann-Whitney U test.

(E) Bending magnitude of a posterior body region (mean ± SEM) decreases

with the position of the posterior limit of the channel (R = �0.24, p < 0.05,

Spearman’s rank correlation test). We measured 64 bouts of forward move-

ment trapped in different channel positions from 20 worms. Channel length is

300 mm.

See also Figure S1.
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Muscle Activity Is Positively Correlated with the
Curvature of Adjacent Anterior Neighbors
To further explore how the bending of adjacent body regions is

coupled, we designed microfluidic devices that trapped the

middle region of a worm at defined curvatures (Figures 4A and

4C). We used channels that were at least 250 mm long to prevent

bending waves from propagating into the unrestrained posterior

part. We found that the unrestrained posterior region exhibited

fixed curvature in the same direction as that imposed on the

middle trapped region (e.g., compare the overall shape of the

posterior region to the trapped region in Figure 4A and
the measured curvature of the posterior region to the trapped

region in the kymogram in Figure 4B; also see Movie S3). By

using channels with different curvatures, we found that the

curvature of the posterior region increased linearly with the

imposed curvature on the trapped middle region with slope

0.62 ± 0.03 L (Figures 4C, S2A, and S2B).

We verified that the fixed curvature of the unrestrained poste-

rior region was due to a fixed pattern of muscle activity. First, by

using a transgenic strain that expresses halorhodopsin (Han and

Boyden, 2007) in all body wall muscles (Pmyo-3::NpHR), we

were able to induce muscle relaxation in the posterior region

with green light illumination. The tail reversibly straightened

during illumination (Figures 4D–4F; Movie S4). Second, we

directly monitored muscle activity in the curved posterior region

using the muscle calcium reporter GCaMP3 (Figure 4G). In the

posterior region emerging from the channel, we consistently

measured higher calcium levels in the muscle cells on the inner

side than the outer side of the curved body (Figures 4H and 4I;

Movie S5). Third, when the whole animal was paralyzed with

sodium azide, the body regions emerging from the curved

channel remained straight, instead of following the curvature

imposed by the channel (Movie S6).

These results suggest that the bending of anterior body

regions dictates the bending of posterior body regions during

forward movement. Posterior regions bend in the same direction

as, and in proportion to, the bend of anterior regions.

Postchannel Body Curvature Follows Channel
Curvature with a Viscosity-Dependent Delay
Next, we measured the time lag between the bending in one

body region and the induced bending in the posterior region.

To do this, we designed pneumatic microfluidic devices to

rapidly change the curvature of a trapped worm (Figure 5A).

We flanked both sides of the immobilizing channel with inde-

pendently controllable inflatable chambers. As with static chan-

nels, we found that the curvature of the posterior body was

positively correlated with channel curvature. Switching channel

curvature toward the dorsal or ventral side induced a corre-

sponding switch in the curvature of the posterior body (Figures

5B and 5C; Movie S7). This result underscores dorsal/ventral

symmetry in the mechanism that couples the curvature of adja-

cent body regions.

We found that the switch in curvature of the posterior region

propagated with measurable speed from the channel to the

tail, consistent with the flow of a retrograde bending signal

(Figures 5D-–5F). To assess whether the delayed bending of

the posterior region represented mechanical damping by the

external viscous fluid or internal delays within the neuromuscular

network, we studied worms in fluids of different viscosity

(Figures 5D–5F). We found that the bending delay was roughly

constant, �300 ms, in fluids ranging from 1 mPa$s (the viscosity

of water) to �100 mPa$s. In more viscous fluids, the bending

delay began to increase, becoming �1 s at 300 mPa$s. These

results suggest that �300 ms represents an upper bound for

delays within the neuromuscular network, which are rate-limiting

at low viscosities. These neuromuscular delays might reflect

delays in synaptic transmission and/or the limiting speed of

muscle contraction.
Neuron 76, 750–761, November 21, 2012 ª2012 Elsevier Inc. 753
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Figure 4. Bending of Posterior Regions Is Positively Correlated with

Anterior Bending

(A) Video images of a worm exhibiting forward undulatory gait while partially

constrained in a curved microfluidic channel (see also Movie S3; Figure S2).

(B) Kymogram of normalized curvature of the worm shown in (A). Gray lines

show anterior and posterior limits of the curved channel. See also Figure S2.

(C) The curvature of the unrestrained posterior body region, measured as

a spatial average from the posterior limit of the channel to the tail and
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Local Proprioceptive Coupling Is Transduced by B-type
Motor Neurons
The C. elegans wiring diagram offers a small number of candi-

date cell types within the motor circuit that might play roles in

generating or propagating a local proprioceptive signal: the

A-type cholinergic motor neurons, B-type cholinergic motor

neurons, the D-type GABAergic motor neurons, and muscle

cells. One neuron outside the core motor circuit, the DVA inter-

neuron, has also been shown to exhibit proprioceptive proper-

ties (Li et al., 2006). We sought to determine which cell type

was responsible for coupling the bending activities of adjacent

body regions through proprioception.

First, we trapped transgenic worms that expressed halorho-

dopsin in all cholinergic motor neurons (Punc-17::NpHR) in the

pneumatic devices and illuminated them with green light. We

found that light-induced hyperpolarization of the cholinergic

neurons prevented the posterior body regions from following

induced changes in the curvature of the anterior region (Figures

6A–6C and Movie S8). Instead, optogenetic inactivation of the

cholinergic neurons locked the posterior region in the posture

as it was immediately preceding illumination.

Second, we studied vab-7 mutants, which have specific

defects in themorphology of the dorsal B-type cholinergic motor

neurons. In these mutants, the DB neurons reverse the orienta-

tion of their axons so that they project anteriorly instead of pos-

teriorly (Esmaeili et al., 2002) (Figure S3A) The vab-7 mutation

does not affect the ventral B-type motor neurons. During unre-

strained forward movement, the bending wave near the head

of vab-7 mutants was normal. However, the bending wave that
a temporal average over bouts of forwardmovement, is plotted as a function of

channel curvature. Each data point (mean ± SEM) represents data from at least

eight animals. Magenta line is the linear least square fit. See also Figure S2.

(D) Video images of a transgenic worm (Pmyo-3::NpHR) partially constrained in

a curved microfluidic channel. The green bar indicates a 2 s interval during

which the posterior body wall muscles emerging from the channel was hy-

perpolarized by green light illumination (see also Movie S4).

(E) Kymogram of normalized curvature of the animal shown in (D). Green

shading indicates the body region and duration of green light illumination.

(F) Mean curvature ± SEM of the posterior region emerging from the curved

channels as shown in (D) during green light illumination (�30 measurements

using six worms).

(G) Calcium imaging of body wall muscles in a partially constrained transgenic

worm (Pmyo-3::GCaMP3::RFP) in a curved channel. Red fluorescence from

RFP constitutes the reference signal. Green fluorescence from GCaMP3

indicates intracellular calcium levels. The contours of the microfluidic channel

are drawn in white (see also Movie S5).

(H) Comparison of the ratio of green fluorescence to red fluorescence intensity

emitted from inner and outer muscles of the posterior body region. Each data

point represents a spatial average of the ratio over a posterior body region

(�0.2worm length) adjacent to the channel and a temporal average over a bout

of forward movement. Solid lines indicate population mean. Among 14

measurements from six worms, six measurements restrict dorsal muscles on

the inner side. ***p < 0.001, Wilcoxon signed rank test.

(I) Representative ratiometric kymogram of calcium levels in inner and outer

muscle cells of a worm trapped in the device shown in (G). Higher/lower ratios

of green fluorescence to red fluorescence in each set of body wall muscles

indicate higher/lower intracellular calcium levels. Arrows highlight one calcium

wave that propagates from the head to the anterior limit of the curved channel

along the inner musculature and outer musculature.

See also Movie S5.
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Figure 5. Pneumatic Microfluidic Device for Manipulating Body

Curvature

(A) Schematic of the pneumatic microfluidic device. The channel is flanked by

two chambers. Alternately pressurizing one chamber while depressurizing the

other rapidly switches thecurvature thecurvatureof a regionof a trappedworm.

(B) Video images of a partially immobilized wild-type worm. At t = 0 s, the

channel starts to change its curvature (see also Movie S7).

(C) Two representative curvature kymograms of a worm trapped in the

pneumatic channel. Gray lines mark the anterior and posterior limits of the

curved channels. White dashed lines at t = 0 s mark the induced change in

channel curvature from negative (color blue) to positive (color red). While the

unrestricted anterior body region exhibits opposite bending activities in the

two kymograms, this difference did not affect the dynamics of the induced

curvature change in the unrestricted posterior body region. The bending wave

that shifts the posterior region from negative to positive curvature propagates

with a velocity v that is the reciprocal slope of the zero crossing in curvature

(color black). A white line is drawn along the zero crossing, and velocity is

calculated from its angle with respect to the vertical axis, v = tanq.

(D) The time course of curvature change in the immediate posterior region

(�0.1 worm length) emerging from the pneumatic channel after the switch of

channel curvature at t = 0 s. The two curves correspond to experiments

conducted in two different viscosities. Error bars indicate SEM.

(E) The time constant for relaxation of the posterior region to new curvatures

obtained by fitting exponentials to time courses as shown in (D). Each data

point represents at least 30 measurements from five worms. Error bars indi-

cate 95% confidence interval to the exponential fits.

(F) The speed of the bending wave following induced changes in channel

curvature as a function of fluid viscosity. Error bars indicate SEM.
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propagates to posterior regions was biased toward the ventral

side (Figures S3B and S3D). When we trapped vab-7 mutants

in the pneumatic channels, the posterior region was only able

to follow channel bending to the ventral side, not to the dorsal

side (Figures S3C, S3F, and S3G). These results suggest that

the dorsal and ventral B-type cholinergic motor neurons are

each responsible for propagating dorsal and ventral curvatures

to posterior body regions.

Third, we compared the effects of specifically inactivating the

A-, B-, and D-type motor neurons. To do this, we examined

transgenic animals in which either the A- or B-type cholinergic

motor neurons are specifically deactivated by an active K+

channel (Punc-4::twk-18(gf)-UrSL-wCherry and Pacr-5::twk-

18(gf)-UrSL-wCherry, respectively) (Kawano et al., 2011; Kunkel

et al., 2000), as well as unc-25 mutants that lack the GABA

neurotransmitter required by the D-type motor neurons (Jin

et al., 1999). During forward locomotion, the bending waves of

animals propagated from head to tail when either the A-or

D-type motor neurons were inactivated (Figures S4A and S4C).

When trapping the worm in the pneumatic microfluidic device,

the posterior region of these worms followed the induced body

bending toward either side (Figures S4B and S4D). In contrast,

inactivating the B-type motor neurons prevented an induced

bend from anterior regions from propagating to posterior regions

(Figures 6D–6F;Movie S9).When the B-typemotor neuronswere

inactivated, the curvature of the posterior region was not locked

to the curvature of the trapped region (Figures 6D and 6E) as for

wild-type worms (Figures 4A and 4B).

TheC. elegansmotor circuit does not possess local sensory or

interneurons that convey local bending information to B-type

motor neurons. The DVA interneuron, whose axon spans the

whole worm body and connects with most DB motor neurons,

has been shown to have proprioceptive properties (Hu et al.,

2011; Li et al., 2006). We thus asked whether DVA plays a role

in propagating local bending information during forward locomo-

tion. However, we found that laser killing DVA does not disrupt

the ability of the posterior region to follow the curvature of the

anterior region (Figures S4G and S4H). Taken together, these

results show that neither the A- and D-type motor neurons nor

the DVA interneuron are needed to propagate the bending signal

from anterior to posterior regions. However, the B-type motor

neurons are essential.

Gap Junctions between Muscle Cells Do Not Contribute
to Proprioceptive Coupling
We also asked whether the body muscle cells themselves might

propagate bending signals from anterior to posterior regions.

Adjacent body wall muscle cells are connected by gap junctions

mediated specifically by an innexin UNC-9, providing a possible

alternative pathway for transducing the proprioceptive signal

(Figure 1B) (Liu et al., 2006). First, we trapped transgenic worms

expressing halorhodopsin in their muscle cells (Pmyo-3::NpHR)

in the pneumatic channel. We found that specifically relaxing

the muscles in the trapped curved region with green light illumi-

nation had no effect on the curvature of the free posterior region

(Figures S4E and S4F). We also tested transgenic animals that

lacked these gap junctions in their muscle cells. To do this, we

used a transgenic unc-9 mutant animal in which unc-9
Neuron 76, 750–761, November 21, 2012 ª2012 Elsevier Inc. 755



expression was restored in UNC-9-expressing cells except the

body wall muscles. We found that these transgenic animals

were fully capable of propagating an imposed bend from anterior

to posterior regions (Figure S4H).

As a further test of gap junctions betweenmuscle cells, we op-

togenetically stimulated body segments in transgenic worms

expressing Channelrhodopsin-2 in body wall muscles (Pmyo-

3::ChR2) without input from motor neurons. To abolish motor

neuron inputs, we treated transgenic worms with ivermectin,

which hyperpolarizes the motor circuit by activating glutamate

gated chloride channel (Cully et al., 1994) but is not known to

affect body wall muscles (Hart, 2006). Optogenetically inducing

ventral or dorsal bending in targeted body segments of para-

lyzed animals did not induce bending of neighboring regions

(n > 10; Figures S5A and S5B; Movie S10). We observed similar

phenomenon when ivermectin treatment was performed in the

unc-13(s69) (n > 10), a loss of function mutation that eliminates

synaptic input from motor neurons to muscles (Richmond

et al., 1999). These experiments suggest that gap junctions

between muscles are insufficient to propagate bending signals

between neighboring body regions.

Interestingly, when we optogenetically induced body bending

in ivermectin-treated paralyzed worms, the bend would persist

long after turning off the illumination (Figures S5A and S5B;

Movie S10). The bendwould gradually relax over�40 s, but often

in a series of abrupt jumps (Figure S5C). This observation

suggests that body wall muscles can exhibit hysteresis: main-

taining stable levels of contraction long after stimulation. This

observation could also explain why inactivating cholinergic

motor neurons in transgenic worms (Punc-17::NpHR) locks
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Figure 6. B-type Cholinergic Motor Neurons Are Required for Transducing the Proprioceptive Signal
(A) Video images of a transgenic worm (Punc-17::NpHR) partially trapped in a pneumatic microfluidic channel. Green bar indicates the duration of green light

illumination of themiddle portion of thewormbefore and after induced change in channel curvature at t = 0 s. As a result, the curvature of the tail failed to follow the

curvature change of the channel. See also Movie S8.

(B) Curvature kymogram of the transgenic worm trapped in the channel as shown in (A). Green shading indicates the body region and duration of green light

illumination. See also Movie S8.

(C) Curvature of the posterior body region, measured as an average from the posterior limit of the channel to the tail, during onset of illumination (green shading)

and the induced change in curvature of the middle region at t = 0 (dashed line). Representative data from five worms were shown. Red curve corresponds to the

experiment shown in (A) and (B). A comparison with Figure 5D shows that posterior body region did not switch its curvature after induced curvature change in the

trapped middle region during green light illumination. See also Movie S8.

(D) Video images of a Pacr-5::twk-18(gf)-UrSL-wCherry transgenic worm partially trapped in a static microfluidic channel. B-type cholinergic motor neurons in this

strain were specifically deactivated because of the expression of an active K+ channel. See also Movie S9.

(E) Curvature kymogram of the partially trapped worm shown in (D) during periods of forward movement. A comparison with Figures 3B shows that the posterior

body region emerged from the channel no longer follow the curvature of the middle region imposed by the channel. See also Movie S9.

(F) The mean curvature of the posterior body region emerged from the microfluidic channel in wild-type (n = 8) and Pacr-5::twk-18(gf)-UrSL-wCherry transgenic

worms (n = 9) during forward movement. All worms were partially trapped in the channel with a curvature 6–8 mm�1. Error bars are S.E.M. ***p < 0.001, Mann-

Whitney U test. See also Movie S9.

See also Figures S3, S4, and S5.
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Figure 7. Calcium Imaging of B-type Motor Neuron Activity Induced by Bend-Sensitive Coupling

(A) Calcium imaging of B motor neuron activity in a forward moving worm. Worms are slightly compressed in the lateral direction (left and right) so that the body

movement is confined within a focal plane to allow simultaneous multi-neuron recording. Upper panel: fluorescent video images of two adjacent motor neurons

VB9 and DB6 in an unrestrained transgenic worm (Pacr-5::GCaMP3-UrSL-wCherry) swimming within a microfluidic chamber. Middle panel: intracellular calcium

dynamics of VB9 and DB6. Lower panel: curvature of the corresponding body region. The intracellular calcium activity can be inferred from the ratio of GCaMP3

fluorescence intensity to wCherry fluorescence intensity. Red fluorescence from wCherry constitutes the reference signal. DR/R is the relative deviation of the

emission ratio from the baseline.

(B) Cross-correlation between VB9 and DB6 calcium dynamics of forward moving worms (Bi). Cross-correlation between VB9 calcium dynamics and the

curvature of corresponding body region (Bii). Cross-correlation between DB6 calcium dynamics and the curvature of corresponding body region (Biii). n = 9 and

error bars indicate SEM.

(C) Representative intracellular calcium dynamics of motor neurons DB6 and VB9 located anterior to the channel. During forward movement, these two neurons

exhibited anticorrelated oscillatory calcium activities (Ci). Intracellular calcium dynamics of VB9 and DB6 when the body region containing both neurons was

imposed to bend toward the dorsal side (Cii). DB6 sustained a higher level of calcium activity (Cii). Calcium dynamics of VB9 and DB6 when the body region

containing both neurons was imposed to bend toward the ventral side (Ciii). VB9 sustained a higher level of calcium activity. In both cases, the calcium dynamics

in VB9 and DB6 inactivated during reversal (Ciii).

(D) Difference of intracellular calcium activity between DB6 and VB9 when the body region containing both neurons were imposed to bend either toward dorsal or

ventral side. This quantity is normalized by the total calcium activity of DB6 and VB9 and averaged over a time period (>20 s) when a worm was moving forward.

Each black line represents a different worm and magenta triangles represent the population mean. **p < 0.005, Wilcoxon signed rank test. n = 10 worms.
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them in the posture immediately preceding illumination (Figures

6A–6C; Leifer et al., 2011).

Bending Directly Activates B-type Motor Neurons
Our results thus suggest that the B-type cholinergic motor

neurons represent the locus for proprioceptive coupling during

forward movement. Next, we sought direct physiological

evidence for the proprioceptive properties of the B-type motor

neurons. First, we measured the intracellular calcium

dynamics of individual DB and VB neurons of unrestrained

worms swimming inside microfluidic chambers (Pacr-5-

GCaMP3-UrSL-wCherry). Consistent with an earlier study (Ka-

wano et al., 2011), the calcium dynamics of DB6 and VB9,

two motor neurons that innervate the opposing dorsal and

ventral body wall muscles, respectively, are negatively corre-
lated with one another during forward movement (Figure 7A).

The cross-correlation between the time-varying calcium

signals from DB6 and VB9 are presented in Figure 7Bi.

Furthermore, we measured the cross-correlation between

motor neuron activity and the local curvature of the worm at

the position of the cell bodies of the motor neurons. We found

that the activity of the ventral motor neuron (VB9) is positively

correlated with bending toward the ventral side (Figure 7Bii),

and the activity of the dorsal cholinergic neuron (DB6) is posi-

tively correlated with bending toward the dorsal side (Fig-

ure 7Biii). These results confirm that the sign and amount of

local bending is strongly coupled to the activity level in the

B-type motor neurons.

To determine whether the bending of anterior regions directly

determines the activity of posterior B-type motor neurons, we
Neuron 76, 750–761, November 21, 2012 ª2012 Elsevier Inc. 757



visualized their calcium dynamics using our curved microfluidic

channels. When we imposed a curvature on the middle portio-

n of a worm, bending waves propagated normally from the

head to the anterior limit of the channel. When we positioned

specific DB and VB motor neurons near the anterior limit of the

channel, we observed rhythmic activity correlated with dorsal

and ventral bending, respectively (Figure 7Ci). When we posi-

tioned the same DB and VB motor neurons within or near the

posterior limit of the channel, we observed fixed patterns of

activity that reflected the curvature imposed by the channel.

Bending the worm toward the dorsal side activated the DBmotor

neuron over the VB motor neuron (Figures 7Cii and 7D). Bending

the worm toward the ventral side activated the VB motor neuron

over the DB motor neuron (Figures 7Ciii and 7D). These fixed

patterns of B-type motor neuron activities relaxed when the

worm spontaneously transitioned to backward movement

(Figures 7Cii and 7Ciii).

Proprioception Is Consistent with Gait Adaptation in
Response to Mechanical Load
Unlike larger well-studied swimmers such as the leech and

lamprey, C. elegans is smaller than the capillary length of water

(�2 mm). At this size, forces due to surface tension that hold

the crawling animal to substrates are 10,000-fold larger than

forces due to the viscosity of water (Sauvage, 2007). Thus, the

motor circuit of C. elegans must adapt to extreme ranges of

external load. When worms swim in low-load environments

such as water, the bending wave has a long wavelength (�1.5

body length L). When crawling or swimming in high-load environ-

ments�10,000-fold more viscous than water, the bending wave

has a short wavelength (�0.65 L). We asked whether the spatio-

temporal dynamics of proprioceptive coupling between body

regions plays a role in this gait adaptation.

In our model, we assert that the undulatory wave begins with

rhythmic dorsal/ventral bends near the head of a worm. Along

the body, however, we assert only the dynamics of propriocep-

tive coupling measured here and previously measured biome-

chanics of the worm body. We model the muscles in each

body region as being directly activated by bending detected in

the neighboring anterior region. We can infer the spatial extent

of this coupling l to be �200 mm based on our direct measure-

ments (Figure 3D). For a 1-mm-long worm freely swimming in

water, the maximum speed of undulatory wave propagation

from head to tail is�2.6mm/s. Thus, we can estimate the limiting

delay tc for transducing a bending signal from region to region to

be 75 ms. The simplest linear model for motor circuit activity

along the body is fully defined in terms of these parameters,

along with biomechanical parameters that were measured in

previous work (Fang-Yen et al., 2010): the mechanical drag

imposed by the environment and the bending modulus of the

worm b. This model can be solved analytically for thewavelength

of bending waves, l:

l=
2pl

uCNðl=2pÞ4=b+utc
: (Equation 1)

Here, CN z30h is the frictional drag coefficient normal to

the body centerline, where h is the fluid viscosity, b = 9.5 3

10�14 Nm2, and u is the angular frequency of undulation in fluid

with different viscosities (Fang-Yen et al., 2010). Equation 1

predicts a specific dependence of bending wavelength on fluid

viscosity that closely fits experimental observations (Figure 8;

Supplemental Information).

Proprioception within the motor circuit provides a simple

explanation for the propagation of bending waves along the

motor circuit. Each body region is compelled to bend shortly

after the bending of anterior regions, so that the rhythmic

bending activity initiated near the head can generate a wave of

rhythmic activity that travels along the whole body.When viewed

within the biomechanical framework of the worm body, the

spatiotemporal dynamics of proprioception within the motor

circuit provides an explanation for the adaptation of undulatory

gait on mechanical load.

DISCUSSION

Prevailing models for rhythmic movements in larger animals

involve networks of CPGs that are modulated and entrained by

sensory feedback (Marder and Bucher, 2001). For example,

the lamprey spinal cord consists of approximately 100 indepen-

dent CPG units distributed along its length (Cangiano and Grill-

ner, 2003). In most systems, coherent rhythmic movements

across the whole body are organized by proprioceptive and me-

chanosensory feedback to CPG units (McClellan and Jang,

1993; Pearson, 1995; Yu and Friesen, 2004). In the leech, muscle

activity between body segments can be coordinated by sensory

feedback even after severing the neuronal connectivity between

segments (Yu et al., 1999). In Drosophila larvae, specific classes

of mechanosensory neurons are required to propagate peri-

staltic waves during locomotion (Cheng et al., 2010; Hughes

and Thomas, 2007; Song et al., 2007).

Figure 8. The Dynamics of Proprioception within the Motor Circuit

Are Consistent with Continuous Gait Adaptation

Theoretically predicted dependence of undulation wavelength on external

viscosity (red; also see Equation 1) closely fit the experimental measurements

(blue). Error bars are 95% confidence interval.
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Here, we found a previously undescribed role for propriocep-

tion within the motor circuit for propagating rhythmic activities

along the body. We show that, during forward locomotion,

bending waves are driven along the body through a chain of

reflexes connecting the activity of neighboring body segments.

Unlike larger animals, C. elegans does not have dedicated local

sensory or interneurons that might generate or propagate propri-

oceptive signals within themotor circuit. The cellular economy of

the C. elegans wiring diagram implies that individual neurons

may have high levels of complexity. Indeed, we have found

that the proprioceptive feedback loop that drives forward loco-

motion is transduced within motor neurons themselves, specifi-

cally the B-type cholinergic neurons. The activity of each VB and

DB motor neuron is directly activated by ventral and dorsal

bending of an anterior region, respectively. Axons of adjacent

B-type cholinergic neurons are not anatomically restricted to

specific segments, but partially overlap with one another in the

ventral and dorsal nerve cords. Thus, going from head to tail,

a large posterior portion of each B-type cholinergic neuron

runs parallel to the anterior portion of its neighbor in the ventral

and dorsal nerve cords. These overlapping portions, along with

gap junctions between adjacent neurons, may provide an

anatomic platform for propagating a bending signal from neuron

to neuron (Figure S6). In vab-7 mutants, the reversed axon

projection of DB motor neurons prevents the dorsal posterior

bending wave propagation. Disruption of the wiring pattern on

the dorsal side, but not the ventral side, of vab-7 mutants might

thus explain the specific disruption of dorsal bending waves to

the tail.

Both DB and VB motor neurons also have long undifferenti-

ated processes that extend posteriorly beyond their regions

of synaptic output to the muscle cells (Figures 1C and S6).

We note that this anatomical property of the B-type motor

neurons led Russell and Byerly to propose that these processes

might have proprioceptive properties. If proprioception were

specifically localized to these processes, they would communi-

cate bending signals from posterior to anterior. Because the

B-type neurons propagate signals from anterior to posterior,

as we have found, the long posterior projections of the B-

type motor neurons are unlikely to represent the specialized

‘‘proprioceptive antennae,’’ and we would expect the relevant

mechanosensitive elements to be localized near their anterior

processes.

One candidate for a potential mechanosensitive channel ex-

pressed in the cholinergic motor neurons is the unc-8 gene

that encodes a putative mechanically gated ion channel.

However, an unc-8(lf) mutation did not disrupt proprioceptive

coupling between neighboring body regions (Figure S4H), and

the mutant moves like wild-type animals. Thus, the molecular

mechanism that confers proprioceptive properties to the B-

type motor neurons remains to be identified. Identifying genetic

lesions that disrupt proprioception in the B-type cholinergic

motor neurons would help define the molecular mechanisms.

Disruption of these mechanosensitive elements would specifi-

cally abolish the propagation of bending waves.

Unlike systems such as the leech, lamprey, or vertebrate

spinal cord, C. elegans does not appear to depend on a distribu-

tion of CPGs along its motor circuit to propagate bending waves.
In C. elegans, proprioceptive information is used to directly drive

the bending of posterior segments based on the bending of ante-

rior segments, not to entrain the rhythms of separate CPG

elements. We propose that a CPG operates near the head of

the worm to generate the rhythmic bending of the most anterior

segment. Proprioception within the motor circuit, however,

suffices to translate the rhythmic activity near the head to sus-

tained undulatory waves along the body.

This form of sensory feedback makes themotor circuit directly

responsive to the external environment. We used our biophysical

measurements to calculate the effect of proprioception on undu-

latory waves in surroundings with different viscosities and

uncovered a compelling explanation for the adaptation of undu-

latory wavelength on external load. At low loads, the worm undu-

lates with a long wavelength. At high loads, the worm undulates

with a short wavelength. This dependence has an intuitive

biomechanical explanation. As external viscosity increases, it

takes longer for a posterior body region to bend in response to

any curvature change in its anterior neighbor. Increasing the

time scale of the bending response increases the phase differ-

ence between the shapes of neighboring body segments,

leading to a smaller undulation wavelength.

The small size and experimental accessibility of the C. elegans

motor circuit allows the possibility of modeling locomotion that

integrates the dynamics of all neuronal and muscular compo-

nents. Our results suggest that a full model ofC. elegans locomo-

tion must integrate the biomechanics of undulatory movement

with neuromuscular activity to properly incorporate the role of

proprioception within the motor circuit.

EXPERIMENTAL PROCEDURES

Worm Strains and Cultivation

Wild-type, transgenic, and mutant worms were cultivated using standard

methods (Brenner, 1974). Detailed strain information can be found in the

Supplemental Information. The transgenic worms used in all optogenetic

experiments were cultivated in the dark at 20�C on NGM plates with Escheri-

chia coli OP50 and all-trans retinal. We performed all experiments using adult

hermaphrodites within a few hours after their final molt.

Microfluidic Devices

Custom microfluidic devices were fabricated in PDMS using soft lithography

techniques. In the pneumatic microfluidic device, the channel was flanked

by two chambers that could be alternatively pressurized and depressurized

with a valve system under computer control using custom software written

in LabVIEW (National Instruments, Austin, TX). We loaded each microfluidic

channel with NGM buffer or dextran solution (�20% dextran in NGM [wt/vol]

in most cases). An individual worm was flowed into the inlet of each microflui-

dic channel andwormpositionwithin each channel wasmanually controlled by

syringes connected to polyethylene tubing.

Measuring Undulatory Dynamics

Experiments were performed on Nikon microscopes (TE2000 or Eclipse

LV150) under 43 magnification with dark-field illumination. Image sequences

were taken by a CCD camera (Imaging Source) and recorded on a computer at

30 Hz using IC Capture software (Imaging Source). Image analysis was per-

formed using custom software written in MATLAB (MathWorks, Inc. Natick,

MA) following methods described in (Fang-Yen et al., 2010).

Calcium Imaging of Body Wall Muscle Activities

We imaged calcium dynamics within muscle cells of worms partially trapped in

microfluidic channels, using methods similar to those described in (Chen,
Neuron 76, 750–761, November 21, 2012 ª2012 Elsevier Inc. 759
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2007). GCaMP3 and RFP were excited by LEDs filtered at 448–492 nm and

554–572 nm, respectively, using Semrock single-bandpass filters. Fluores-

cence emission was recorded through an Olympus MVX Plan Apochromat

2X objective (working distance, 20 mm; numerical aperture, 0.5). The fluores-

cence image was split by a Cairns Optosplit II Image Splitter, and the two

images (green channel, 499–525 nm; red channel, 581–619 nm)were projected

onto two halves of an Andor iXon 885 EMCCD camera. A DinoLite Pro AM413T

USB camera was used to track the worm using Worm Tracker 2.0 software

developed by the Schafer laboratory. Zaber T-LSR075A Motorized Linear

Slides give automated x-y stage movement. Imaging sequences were re-

corded on a computer at 10 Hz using Andor Solis software andwere converted

into TIFF files using ImageJ. Images were then analyzed using custom-written

MATLAB scripts. Briefly, the two split images were realigned, and the calcium

activities of muscles were calculated as the ratio of green to red fluorescence

emission intensities. The true emission intensities from the two channels are

calculated using the following formulas: True green = green measured� green

background; True red= redmeasured� redbackground�0.1533Truegreen.

There is 15.3% bleedthrough from the green to the red channel.

Calcium Imaging of B-type Motor Neurons

We imaged calcium dynamics in B-type cholinergic motor neurons of worms

moving in the microfluidic device using a spinning-disk confocal microscopy

(Yokogawa). GCaMP3 and wCherry, which are coexpressed in the B-type

motor neurons, were excited by a 488 nm blue laser and a 561 nm yellow laser

(Andor Technology) alternatively at every 30 ms. Fluorescence emission was

collected through a Nikon Plan Apo 203 objective (working distance, 1 mm;

numerical aperture, 0.75) and projected onto an Andor iXon2 EMCCD camera.

Imaging sequences were recorded using the NIS-elements software and con-

verted into TIFF files. Images were then analyzed using custom-written

MATLAB scripts. The motor neurons of interest were automatically identified,

and the calcium dynamics in the cells were calculated as the ratio of GCaMP3

to wCherry fluorescence emission intensities from two sequential images

using the following formula:

R=
Ib � εr Iy
Iy � εgIb

1+ εg

1+ εr

; (Equation 2)

where Ib is total fluorescence emission intensity excited by the blue laser and Iy
is the total fluorescence emission intensity excited by the yellow laser. εr is the

ratio of mCherry emission intensity excited by the blue laser to that excited by

the yellow laser. εg is the ratio of GCaMP3 emission intensity excited by the

yellow laser to that excited by the blue laser. εr = 0.0356 and εg z0 when

the same blue and yellow laser power was used. These ratios were measured

using strains expressing only wCherry or GCaMP3 in given neurons.

To measure the correlation between intracellular calcium dynamics in the

B-type motor neurons and the bending activity in the corresponding body

region, we used canny edge detection method to identify the boundaries of

the worm body from the fluorescence images and calculated the curvature

of the body segment where the cell body of the motor neurons are located.

The cross-correlation between calcium activities and curvature was calculated

using the following formula:

CxyðtÞ= hDxðt + tÞDyðtÞi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihDx2ðtÞip ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihDy2ðtÞip ; (Equation 3)

where Dx(t) and Dy(t) are deviations of x and y from their respective means and

h$i denotes the average over time.

Optogenetic Stimulation

We used two optical setups to stimulate transgenic worms expressing Chan-

nelrhodopsin or Halorhodopsin. Experiments with the pneumatic microfluidic

device (Figure 6A) were conducted on a Nikon microscope (Eclipse LV150)

under 103 magnification with dark-field illumination. A mercury arc lamp

with green filter and field diaphragm was used to illuminate the worm with

controlled spot size. Rhodamine in the microfluidic channel (10 mM) allowed

us to directly visualize the area and duration of green light illumination. Other

optogenetic experiments were performed using a modified version of the

CoLBeRT system (Leifer et al., 2011). See Supplemental Information for

a more detailed description.
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