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A macroscopic device described by a Boltzmann-like
distribution†

Simon Tricard,‡ Claudiu A. Stan,‡* Eugene I. Shakhnovich
and George M. Whitesides*

Equilibrium thermodynamic phenomena such as the Maxwell–Boltzmann distribution of molecular

velocities are rare in systems of macroscopic particles interacting by mechanical collisions. This paper

reports a system composed of millimeter-sized polymer objects that under mechanical agitation exhibits

a “discretization” of the configurations of the system, and has a distribution of the probabilities of these

configurations that is analogous to a Boltzmann distribution. The system is composed of spheres and a

three-link chain on a bounded horizontal surface, shaken with an aperiodic but not completely random

horizontal motion. Experiments were performed at different strengths of agitation (quantified by the

frequency of agitation, f, at constant amplitude) and densities of spheres (quantified by the filling ratio,

FR). The chain was typically found in one of three conformations – extended, single folded, and double

folded – because, under collisions with the spheres, adjacent links were stable mechanically only when

fully extended or fully folded. The probabilities of the different conformations of the chain could be

described by a Boltzmann distribution in which the “temperature” depended on f and the “energies” of

conformations on FR. The predictions of the Boltzmann formula using empirically determined

“temperatures” and “energies” agreed with measurements within two experimental standard deviations

in 47 out of 48 experiments.
Introduction

A ubiquitous concept in statistical mechanics is the modeling of
a gas by solid spherical particles colliding elastically in a box.
This model is the rst that most students encounter when they
study statistical mechanics, and it explains clearly how ther-
modynamic properties (pressure, temperature, entropy, and
many others) emerge as a result of molecular motions. The
value of this model, aside from the validity of its analytical
predictions, resides in its physically intuitive nature: it is built
on basic concepts such as solid spherical particles and walls
with precisely dened positions and velocities, perfectly elastic
collisions, and so on.

It would be interesting to build a physical macroscopic
model of a classical gas, even if only as a tool to teach statistical
mechanics, but such a model is not (rigorously) possible
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because macroscopic systems are dissipative. In order to
maintain motion in a macroscopic system, one needs to supply
energy to the system, and driven systems are not in thermody-
namic equilibrium. External driving is a technique oen used in
the eld of granular physics, which studies mechanical
ensembles of moving macroscopic particles whose intrinsic
thermal motion is too small to be observed.1 In most cases,
mechanically agitated systems of macroscopic particles do not
exhibit thermodynamic equilibrium properties, such as a
Maxwell–Boltzmann distribution of particle velocities.2,3

It is nevertheless possible, though not trivial, to build
physical systems of macroscopic particles whose motions
mimic accurately the thermal agitation in a molecular gas.
Examples of these systems are still rare,4,5 and pose interesting
questions: can characteristics of equilibrium thermodynamic
behavior be observed in a dissipative driven system? Do non-
equilibrium systems that obey the laws of thermodynamics
exist – and why?

Here we report a model macroscopic system (made from
polymer beads shaken on a horizontal at surface) that we
designed to mimic a fundamental statistical-mechanical
problem: a system with discrete energy levels in thermodynamic
equilibrium with a thermal bath. More specically, we investi-
gated the behavior of a system analogous to a molecule with
discrete vibrational levels immersed in a monoatomic buffer
gas; the concentration of molecules is much lower than that of
This journal is ª The Royal Society of Chemistry 2013
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the buffer gas and the molecule–molecule interactions are
practically inexistent. The statistical-mechanical behavior of the
molecule arises aer many random collisions with atoms from
the buffer gas.

Our model system is made of three polymer cylinders joined
by exible links (the “molecule”), immersed in an ensemble of
free-rolling spheres (the “atoms”), and shaken continuously.
The rst surprising behavior of the chain was an approximate
“discretization”: though the links are continuously bendable,
the chain was found most of the time in only three spatial
conformations (extended, and folded in two different ways) to
which we were able to assign distinct “energies”. The second
surprising behavior was thermodynamic-like statistical
behavior: the probability of the chain being in one of the
conformations was approximately described by a Boltzmann-
like distribution.
Background
Physical-model simulations

Physical-model simulations can be used to study systems whose
behavior is too complex to be modeled based on analytical
calculations. Physical models are less common than numerical
simulations, because numerical simulations, which benet
from the constant improvements in computational power and
the sophistication of soware, are oen less expensive. There
are nevertheless cases in which the phenomena under study are
too complicated to rely exclusively on computational simula-
tions. Physical models are still being built to study environ-
mental phenomena such as soil erosion,6,7 atmospheric ows
over rural terrains,8 physiological systems and processes,9,10 and
technological procedures in metallurgy11,12 and drilling.13

We are interested in physical-model simulations for a different
reason: we want to build models that can be perceived with our
senses (sight, primarily) of phenomena that can only be observed
with the aid of special tools, or for which direct component-level
observations are not possible. We expect these physical models to
guide our intuition about the phenomena that we simulate, and
lead to discovery of new ones, because the human mind is
specialized in interpreting information acquired by our senses.

As part of our previous explorations of self-assembly and of
complexity, we have used ensembles of millimeter-sized objects
to create several macroscopic models of molecular phenomena.
The most ubiquitous phenomenon that we simulated was
crystallization, which we could reproduce at the macroscopic
scale using hard objects interacting by capillary14 and electro-
static15–18 forces. The capillary and electrostatic interaction
potentials between objects were not identical to intermolecular
potentials, but we could build a system with a particle interac-
tion potential close in shape to intermolecular potentials, by
using so deformable objects that interacted by capillary forces;
we used this system to simulate indentation fractures in crys-
tals.19 We also simulated the dynamic behavior of polymers
using mechanically-agitated macroscopic beads arranged on a
string, and we observed bending and folding phenomena in
systems in which the beads either interacted via electrostatic
forces20 or did not.21
This journal is ª The Royal Society of Chemistry 2013
Granular matter as a physical model of molecular
thermodynamic behavior

Granular matter is composed of distinct particles; if the parti-
cles move independently from each other, a state that we will
refer to as dynamic, the primary mechanism of interaction
between particles is through collisions. Dynamic granular
ensembles seem analogous to molecular gases, and attempts
have been made to understand the properties of granular
matter using the formalism of equilibrium thermodynamics.22

Parameters such as the granular temperature23 have been used
as surrogates for the thermodynamic temperature and proved
useful in understanding the behavior of granular systems. The
granular temperature TG is equal to the average of the uctua-
tions of the kinetic energies of the particles. The velocity of the
overall motion (the coarse-grained velocity of particles, vc) must
be subtracted from the velocity of particles, v, as shown in
eqn (1), where mG is the mass of the particles.

TG ¼ mg

2
ðv� vcÞ2 (1)

Granular matter in motion is a dissipative system, because
collisions between particles are not elastic; external driving
forces are required to maintain the movement of particles. The
driving must be uniform, in the sense that all particles experi-
ence the same average driving force, to enable a thermodynamic
distribution of the properties of particles; if the driving is not
uniform, the granular temperature is highest near the driving
source and decreases away from it.24,25 Though necessary,
uniform driving is not sufficient to create a physical model of a
thermodynamic system at equilibrium. In two-dimensional,
vertically-vibrated submonolayer experiments, the distribution
of velocities of granular particles is not the Gaussian curve
characteristic of a Maxwell–Boltzmann distribution.2,3

Experimental systems in which macroscopic objects behave
similarly to molecules under thermal agitation have been
reported previously.4,5 The key to the success of these systems
seems to be the randomization of the driving forces. In a rst
example, two layers of spheres, gravitationally-segregated
because of their different densities, were agitated vertically by a
bottom plate;4 the two-dimensional velocities of particles from
the top (but not the bottom) layer had a Gaussian distribution.
In a second example, a granular mixture of spheres with two
different sizes was sheared in a Couette cell (system thickness�
ve monolayers, driven from both bounding surfaces); the
diffusivity and the mobility of tracer particles embedded in this
system followed a Stokes–Einstein-type relation which was used
to calculate the granular temperature.5

While eqn (1) represents probably the most intuitive way in
which a granular temperature can be dened (i.e., the temper-
ature is a measure of the random kinetic energy of particles),
calculating TG from a Stokes–Einstein-type relation illustrates
how a statistical-mechanical phenomenon (i.e., the pro-
portionality of diffusivity and mobility) can be used to dene
thermodynamic-analogous parameters for granular matter.
Here we show that a statistical-mechanical relation, the Boltz-
mann distribution, can be used to dene and calculate granular
variables analogous not only to the temperature, but also to the
Soft Matter, 2013, 9, 4480–4488 | 4481
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values of discrete energy levels and to statistical-mechanic
degeneracies.
Experimental design
MecAgit: a horizontally-driven, two-dimensional granular
system

Our experimental system (Fig. 1(a)) consists of a at horizontal
surface on which we shake millimeter-sized objects within a
region bounded by vertical walls. Compared to other horizon-
tally shaken granular systems, ours is distinguished by its
pseudo-random agitation motion,20 which is a combination of
orbital shaking with randomly timed “kicks”; a detailed
description of the pseudo-random agitation scheme can be
found in the ESI.† To tune the intensity of agitation, we varied
the frequency of the orbital shaker, f.

We prepared a circular mixing area with a diameter of 0.48 m
using an aluminum rim, and we covered the area inside the rim
with paper to generate an area with a constant friction coeffi-
cient on which the objects would roll, but not slide, when the
plate was agitated. To avoid any possible electrical charging by
contact electrication within the experimental setup, we
maintained a relative humidity of more than 60% RH using a
humidier connected to the enclosed space above the plate.15
Fig. 1 (a) Experimental apparatus. Polymer spheres and a chain with flexible
links are shaken with an aperiodic motion on a horizontal surface. (b) The three
observed conformations for the chain: extended (C1), partially folded (C2), and
fully folded (C3).

4482 | Soft Matter, 2013, 9, 4480–4488
In all experiments, we lled the mixing area with simple
(spheres) and composite (cylinders connected by a string)
polymeric objects, and shook them with a pseudo-random
motion to simulate molecular phenomena. We will refer to this
method of simulating molecular phenomena as “mechanical
agitation”, or MecAgit.21 The characteristics of MecAgit models
are their two-dimensionality, the millimeter-size of the
objects, the pseudo-random agitation, the possibility to design
composite objects such as beads-on-a-string, and the control of
long-range electrical interactions between objects by using
different values of the relative humidity to suppress or allow
contact electrication.
Designing a physical model of a canonical ensemble

The canonical ensemble is one of the most useful statistic-
mechanical concepts for predicting the thermal behavior of a
system. The whole system is composed of a smaller system
(therefore referred to as simply “system”) that has a range of
possible macrostates whose total energy Ei is known, and a
thermal bath in which the system is immersed. The probability
Pi of the system being in a macrostate with energy Ei depends
exponentially on the absolute temperature T, and the proba-
bilities are given by the Boltzmann distribution (eqn (2)), in
which kB is the Boltzmann constant, and the degeneracy gi is the
number of distinct microstates having the same energy Ei. The
normalization factor is the partition function Z(T), given by
eqn (3), where the sum is conducted over all possible energies of
the system.

Pi ¼ 1

ZðTÞ gie
�

�
Ei

kBT

�
(2)

ZðTÞ ¼
X
i

gie
�

�
Ei

kBT

�
(3)

Eqn (2) is general and can describe the behavior of a system
of components which interact, because the total energy of the
system includes the energy of interaction. The Boltzmann
distribution also applies to other groups of microstates if the
interactions between components are constant and the energies
Ei can be written as a sum of terms corresponding to different
degrees of freedom of the system. For example, in an ideal gas
the Boltzmann distribution applies to the kinetic energy of the
particles as well; this particular Boltzmann distribution was
derived from the general one by averaging out the internal
degrees of freedom of the particles. Here, we use the term
“Boltzmann distribution” to refer to both the general case and
to derived distributions. For derived distributions, Ei is the type
of energy (e.g. kinetic) associated with the considered degrees of
freedom, and gi the number of microstates having the energy Ei.

To simulate a canonical ensemble using MecAgit, we needed
a “thermal bath” and a “system”. The “thermal bath” was
composed of free-rolling poly(methyl methacrylate) (PMMA)
spheres with a diameter of 6.35 mm. We quantied the density
of spheres in the system using the lling ratio (FR) parameter,
This journal is ª The Royal Society of Chemistry 2013
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dened as the ratio between the number of spheres in the
system and the number of spheres required to ll completely
the mixing area in a single layer with hexagonal packing.

The “system” (Fig. 1(b)) was a chain composed of three Nylon
cylinders (6.35 mm diameter, 14 mm length) connected by
exible links (14 mm length) between cylinders. The chain
could assume three folding conformations (Fig. 1(b)): (i) C1:
unfolded, with none of the cylinders in contact and extended,
(ii) C2: partially folded, with two cylinders in contact, and (iii)
C3: fully folded, with all three cylinders folded together. There
are two conformations C3, with the middle cylinder either at the
center or at the periphery of the folded chain. We used only one
chain to supress chain–chain interactions and to observe a
Boltzmann-like distribution of the chain conformations. When
multiple chains were shaken on the table, they interacted
strongly and we could not observe the discretization of chain
conformations.

The experiments consisted of measurements of the proba-
bility of conformations as a function of f (the orbital shaking
frequency) and FR (the lling ratio). We recorded images of the
system with a photo camera every 30 seconds for up to 30
minutes of continuous agitation, and we determined the type of
conformation for each photograph using automated image
analysis. We have focused on the “internal degrees of freedom”

of the chain, ignoring translation. All measurements were per-
formed during shaking and aer the shaken system reached a
steady state, because, similarly to the reasoning used in
previous studies of dynamic granular systems, we regarded the
shaking frequency as a measure of “temperature”; the steady-
state system of spheres shaken at constant frequency thus had a
constant “temperature”.

Measuring the probabilities of all conformations represents
a statistical-mechanical approach and justies the use of the
canonical ensemble formalism26 to describe our system, which
is composed of only one particle (the chain) and thus is not
thermodynamic. Another justication for treating the chain as a
canonical ensemble with one particle is that the energy of
interactions between the chain and the spheres is much smaller
than the total energy of the chain; the energy of the chain, which
depends on its conformation, represents a meaningful param-
eter because the uctuations of its value are small during the
timescale of interactions with the spheres. Since the spheres are
less massive than the chain, a single collision between a sphere
and the chain does not transfer enough energy to the chain to
cause a transition between different conformations. We evalu-
ated that the minimum number of collisions between indi-
vidual spheres and the chain that caused a change in the
conformation of the chain was on the order of 100, because (i)
transitions between conformations took several seconds, (ii) the
chain interacted on average with around ten spheres, and (iii)
the characteristic frequency of interactions was on the order of
the frequency of random “kicks” to the table, xed at 4 Hz in all
experiments. Between these transitions, the conformation of
the chain was stable for periods on the order of tens of seconds.

In determining the statistical-mechanical properties of the
system by temporal averaging of each conformation, we
assumed implicitly that our canonical ensemble model is
This journal is ª The Royal Society of Chemistry 2013
ergodic, but we could not test this assumption using our setup.
A test of ergodicity would require agitation of multiple chains at
the same time, such that the temporal average of the confor-
mation of one chain could be compared with the average
conformation of all chains; also, the density of chains in the
system must be low enough to prevent collisions between
chains. The shaking table required for an ergodicity test would
be several meters in diameter, and thus impractical to build.
Results

During agitation, the motion of the chain was caused by two
driving forces: (i) friction with the agitating surface, and (ii)
collisions with the PMMA spheres. Due to the design of our
apparatus, the pseudo-random agitation engaged both the
spheres and the chain, and was thus a uniform driving force.
The mechanical driving of the chain was further randomized by
collision with the spheres. The randomness of the overall
driving of the chain and the dependence of conformation
probabilities on the frequency of agitation suggested that the
statistics of the conformations of the chain would be analogous
to the statistics of an equilibrium thermal system.

To demonstrate that the statistics of our system was analo-
gous to a Boltzmann distribution, we used this reasoning: (i) we
assumed rst that the statistics of the system was described by a
Boltzmann distribution (eqn (2)), (ii) we calculated the param-
eters of the Boltzmann distribution, i.e. the “energies” of
the three conformations of the chain, and the “temperature” of
the chain, for each experiment, and (iii) we concluded that the
statistical behavior of the system was analogous to that of a
canonical ensemble, because we could t with good accuracy
the probabilities of congurations using a small number of
“energy” and “temperature” parameters. Our reasoning
assumed that (i) our system is ergodic; (ii) the chain–sphere
interactions do not have to be included explicitly in the analysis
because they were constant at a given set of f and FR values; we
regarded them as a source of weak stochastic interactions that
enabled the folding of the chain and that could be averaged out
in the Boltzmann distribution; and (iii) the spheres shaken at
constant frequency provide a “constant-temperature bath”. We
could not demonstrate experimentally the validity of these
separate assumptions, but we regard them as reasonable
hypotheses that were collectively validated by a good t of the
Boltzmann model.
The “discretization” of the shape of the chain during agitation

We found that during agitation, the chain assumed the shape of
one of the conformations C1, C2, or C3 in 93% of all photo-
graphs that we recorded. This “discretization” of shape to three
distinct conformations during agitation was caused by the
collisions with the spheres and by the particular relations
between the sizes of the spheres, of the cylinders, and the mean
free path of the spheres in our system. We can understand this
phenomenon by considering a chain with two cylinders joined
by a weakly elastic wire, colliding with an ensemble of spheres
(with sizes comparable with those of cylinders) whose motion
Soft Matter, 2013, 9, 4480–4488 | 4483
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does not have a directional bias. If the angle between the two
cylinders is 180� (i.e. an extended conformation), the two sides
of a single cylinder are impacted (on average) at the same rate by
spheres, and though the angle between cylinders might uc-
tuate, there is no net “sphere pressure”27 to cause the folding of
the chain. If, however, the angle between cylinders is less than
180� and the mean free path of spheres is larger than the length
of the cylinder, the sides of a cylinder that face the inside of the
angle are partially shielded from sphere collisions by the other
cylinder; in this case, there is a net “sphere pressure” that tends
to reduce the angle and to fold the chain.

Depending on the stiffness of the link, there is a critical
angle between the cylinders at which the tension of the link is
balanced by the imbalance in sphere pressure. If the angle is
larger than the critical angle, the elasticity of the link opens the
chain; if the angle is smaller, the “sphere pressure” folds the
chain. The two-cylinder chain is therefore a bistable system,
with two stable equilibrium positions at cylinder angles of
0� and 180�, and one unstable equilibrium position at the
critical angle. Our three-cylinder chain has three stable
conformations; under the effect of uctuations in the rate of
collisions with spheres, the three-cylinder chain will be, for the
majority of time, in one of its three conformations. The shape of
the chain is thus “discretized”, in the approximate sense that
only three conformations are observed.

The simple model we presented here to explain the
predominance of C1, C2, and C3 conformations does not take
into account biases in the motion of spheres, nor the fact that in
our experiments, FR had values between 0.5 and 0.9, and the
spheres therefore constituted a liquid-like rather than a gas-like
system. We nevertheless believe that this model explains
correctly the origin of “discretization” in our macroscopic
system.
The dependence of the “energy levels” on the lling ratio

Because the links between cylinders are elastic, the folded
conformations C2 and C3 have a higher potential energy than
the open conformation C1. The mechanical elastic energy
stored in once (C2) or twice (C3) folded links is not identical to
the “energies” of conformations C2 and C3 that are the
parameters of a Boltzmann-like distribution. An important
characteristic of our system is that the statistic-mechanical
“energies” associated with the three conformations of the
chains depended on the lling ratio of the spheres. This
dependence can be understood qualitatively using either of the
two physical arguments below.

The mechanical energy needed to fold the chain when it is
immersed in an ensemble of colliding spheres is less than the
mechanical energy needed to fold the chain in the absence of
collisions with spheres. When spheres are present, the chain
needs to bend only as far as the critical angle for unstable
equilibrium; past this point, the “sphere pressure” will
complete the folding of the chain. At larger lling ratios, the
surface density of spheres is larger, and thus the “sphere pres-
sure” is larger; this fact brings the critical angle closer to 180�

and reduces the energy needed for folding. As the lling ratio
4484 | Soft Matter, 2013, 9, 4480–4488
increases, the differences in “energy” between the three
conformations are thus reduced, and, as we will show later, the
“energies” of the three conformations can become approxi-
mately equal.

An alternate explanation of the dependence of folding
energies on FR is based on the analogy between the three-
cylinder chain and a polymer molecule. Flexible polymer
molecules whose monomer units do not interact assume a
coiled shape with an average end-to-end length that is smaller
than the contour length of the polymer.25 Coiling is a statistical
phenomenon caused by thermal agitation (i.e., collisions with
solvent molecules), and leads to measurable entropic forces
that compress stretched polymers to the coiled conforma-
tion.28,29 In our system, sphere collisions tend to fold the three-
cylinder chain, and the folding force is larger at higher lling
ratios because the rate of collisions is larger. For the conditions
of our experiments, these folding forces are “weaker” than the
mechanical elasticity of the chain, and they reduce the effective
stiffness of the chain, and thus the differences between the
energies of the three conformations, by a degree that increases
with the lling ratio.
The dependence of the conformation of the chain on FR and f

Fig. 2 shows the probabilities Pi of all conformations Ci (i¼ 1, 2,
3). We measured Pi for all combinations of FR values of 0.0, 0.5,
0.6, 0.7, 0.8, and 0.9, with f values of 100, 120, 140, and 160 rpm.
Orbital agitation at frequencies below 80 rpm made spheres
move collectively without any sphere–sphere collisions, corre-
sponding to a granular temperature TG ¼ 0. At 80 rpm the
spheres began to collide, but the evolution of the system
towards a steady state was very slow. For orbital agitation
frequencies above 160 rpm, the weight of the plate was not
sufficient to maintain all four supporting cables extended, and
the plate did not remain horizontal at all times. With the
exception of the measurements at FR ¼ 0.0 (no spheres), we
chose the FR values to cover the widest range of lling ratios for
which all three conformations were observed; for FR < 0.5, the
chain either remained in the extended state, or the plate could
not be leveled well enough to avoid movement of the chain
towards the edge of the mixing area.

In the absence of spheres, the chain stayed extended
(conformation C1) at all times, and P1 ¼ 1 and P2, P3 ¼ 0. From
FR ¼ 0.5 to FR ¼ 0.8, as f was increased, conformation C1 (the
lowest energy) became less probable, and conformation C3 (the
highest energy) became more probable. A special case was
encountered for a lling ratio of 0.9: within experimental
uncertainty, the probabilities did not depend on f and P1 < P2 < P3.

If we regard the frequency of orbital agitation as a variable
analogous to the thermodynamic temperature, the dependence
of the coiling state of the chain on f is analogous to the behavior
of certain polymer molecules. In the case of FR ¼ 0, we have
shown previously21 that chains similar to the one we use here,
and agitated without spheres, followed the worm-like chain
model (WLC) which describes the coiling of polymers that have
a nite stiffness. When spheres are present, they make the
whole system analogous with a polymer molecule in a “poor”
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Probabilities, Pi, of the chain being in one of the conformations Ci (see
Fig. 1(b)) as a function of the filling ratio FR and of the frequency of orbital shaker
f. For filling ratios between 0.5 and 0.8, as f increases, the probability of the
lowest-energy state C1 decreases, and that of the highest-energy state C3
increases, suggesting that f is related to the granular temperature of the system.
The investigated values of f were the same for all conformations; for clarity, data
for C1 and C3 were shifted slightly along the x-axis. The error bars are the
expected statistical errors, assuming a Poissonian distribution of the number of
times, ni, in which conformation was observed during an experiment (relative
error: (ni + 1)�1/2); ni varied between 0 and 35 among all measurements.
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solvent with a lower critical solution temperature (LCST).30

Usually, polymers in solvents tend to have a more extended
conguration as the temperature increases, but solvents with a
LCST show the opposite dependence – the polymer molecules
become more compact as the temperature increases. In our
case, the chain becomes more compact as the orbital agitation
frequency f increases.
Calculation of the degeneracy of chain conformations

The statistical-mechanical denition of degeneracies gi in our
system is the number of “microstates” of the chain that have
the same folding conformation Ci. A direct counting of the
“microstates” was not possible, because we could not dene the
“microstates” of the chain. Instead, we attempted alternate
calculation methods.

Thermodynamic method.We calculated the degeneracy values
of the three conformations based on the number of folded
shapes that cannot be transformed into each other by two-
dimensional rotations and translations. A transition between
two folded shapes of the same conformation can only happen if
This journal is ª The Royal Society of Chemistry 2013
the chain assumes a different conformation during the transi-
tion. Fig. S1 in the ESI† shows all possible folded shapes: one for
C1, two for C2, and four for C3. Identifying the number of fol-
ded shapes with the degeneracy values, we obtained g1 : g2 : g3¼
1 : 2 : 4.

Empirical method. The thermodynamic method is related to
the concept that transitions between states with same energy
but different symmetries can only occur via intermediate tran-
sitions to states with different energies. The number of states
with different symmetries is thus related to the network of
possible transitions between all states of the system. The
degeneracies can be calculated from the network of these
transitions, or “reaction paths”,31 and it was shown that for
molecular systems the calculation of degeneracies based on
counting the “reaction paths” is equivalent to the thermody-
namic method based on symmetry.32 Our system has charac-
teristics not encountered at the molecular scale (e.g. friction)
that may lead to degeneracy numbers different from those
calculated by the thermodynamic method. For example, a given
way of folding the chain (i.e., the “reaction path” in our system)
could have a different rate than the reverse process of
unfolding.

Given the subtleties of applying models valid for molecules
to our macroscopic system, we calculated the degeneracy
numbers empirically, using the property of the Boltzmann
distribution (eqn (2)) that, if the energies of conformations are
identical, the probabilities of conformations are independent of
temperature and proportional to their degeneracies.

To identify the experimental conditions for which the three
chain conformations had the same “energy”, we assumed that
the “temperature” of the system is a function of the orbital
agitation frequency f, because the kinetic energies of the objects
increased as f increased. At FR ¼ 0.9, the probabilities were
approximately independent of f and thus independent of the
“temperature”. Assuming that for FR ¼ 0.9 the “energies” of
congurations had the same value, we scaled the average
probability of conformations to get the empirical degeneracy
values g1 : g2 : g3 ¼ 1 : 9.5 : 60.5.

The “optimal” degeneracy values. The quality of the t
between the Boltzmann-like model and experimental results
depended on the degeneracy values we used. Using the empir-
ical degeneracy numbers led to a much better agreement with
the Boltzmann-like model than the thermodynamic degeneracy
numbers. We also attempted to determine an optimal set of
degeneracy numbers through numerical tting, but we could
not nd one, because the tting error function did not have a
minimum at physically reasonable degeneracy numbers. We
will report here only the Boltzmann-like parameters obtained
using empirical degeneracies.
Modeling the statistics of chain conformations with a
Boltzmann distribution

The dependence of the probabilities of conformations on f for
lling ratios from 0.5 to 0.8 (Fig. 2) is similar to the dependence
of the populations of a system with three energy levels on
temperature. This similarity suggested that the probability of
Soft Matter, 2013, 9, 4480–4488 | 4485
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Fig. 3 The MecAgit temperature and energies TMA and Ej,MA. (a) The values of
TMA as a function the frequency of agitation f, calculated after choosing TMA ¼ 1
at 120 rpm. The symbols represent the TMA data, and the line shows the best
power-law fit of the data, TMA � f 2.5. (b) The configuration energies E2,MA and
E3,MA as a function of the filling ratio FR. The symbols represent the measure-
ments, and the lines are linear fits weighted by the standard error of measure-
ments. The error bars in all graphs represent one standard deviation of the
measurements (seven or eight measurements for TMA; three or four measure-
ments for Ej,MA).
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C1, C2 and C3 conformations might be described mathemati-
cally by a Boltzmann distribution (eqn (2)) in which the energies
Ei and the temperature T are functions of the experimental
parameters f and FR.

Derivation of a Boltzmann-like mathematical model that
predicts the probabilities of the three conformations of the chain
requires the denition of “temperature” and “energies” as func-
tions of the experimental parameters f and FR. One way to
determine these dependencies is to assume that the “tempera-
ture” and “energies” are polynomial functions of both f and FR,
and determine the polynomial coefficients by multivariate
mathematical tting of measured probabilities to the model.
Because multivariate tting might not converge, or lead to
macroscopic T and Ei that are complicated functions of f and FR,
we have chosen instead to use a model as simple as possible.

In our model, (i) T depends only on f because the “temper-
ature” should be related to the frequency of agitation, and (ii) Ei
depend only on FR. The second assumption represents a
simplication from the argument that we made previously to
explain why the energy levels depend on the lling ratio. If the
energy levels depend on the rates of sphere impacts on the
chain, they will depend on FR and f because the rate of colli-
sions depends on both parameters. We nevertheless chose to
neglect the probable dependence of Ei on f, because it made the
model simpler, and as we will show later, the agreement
between model and experiments was good.

With the assumption that the “temperature” depends on f
but not on FR, and the “energies” depend on FR but not on f, the
Boltzmann-like equation for probabilities of conformations
becomes:

Pið f ; FRÞ ¼ 1

Zð f ; FRÞ gie
�

�
Ei;MAðFRÞ
TMAð f Þ

�
; i ¼ 1; 2; 3 (4)

In eqn (4) we dened the “MecAgit temperature” TMA, and
the “MecAgit energies” Ei,MA, which are measured in the same
energy units (e.g. Joules). This denition is equivalent to
choosing the “Boltzmann-like constant” kB,MA ¼ 1 in the
Boltzmann-like equation; therefore, eqn (4) does not contain a
“Boltzmann-like constant”.

The tting of measured probabilities to eqn (4) is difficult
because of its nonlinearity. Instead, in order to determine
Ei,MA(FR) and TMA( f), we rst linearized eqn (4) by eliminating
the partition function Z( f, FR). Eqn (5) shows that the ratio of
populations of two conformations does not depend on Z:

Pj

P1

¼ gj

g1
e

�

 �
Ej;MA � E1;MA

�
TMA

!
; j ¼ 2; 3 (5)

Because only the differences between energy levels are rele-
vant in our analysis, we adopted the convention that E1,MA ¼ 0.
With this convention, we used eqn (6) to calculate the values of
E2,MA/TMA and E3,MA/TMA from the conformation probabilities Pi
(see Fig. S2 in the ESI†). Using these values, we calculated TMA as
a function of f by averaging the data from experiments per-
formed at different FR values, using eqn (7).
4486 | Soft Matter, 2013, 9, 4480–4488
Ej;MA

TMA

¼ �ln

 
Pj

P1

g1

gj

!
; j ¼ 2; 3 (6)

TMAð f Þ ¼ 1

nj;FR

X
j;FR

TMAð120Þ � Ej;MA=TMAð120;FRÞ
Ej;MA=TMAð f ;FRÞ (7)

In eqn (7), nj,FR is the number of non-zero P2 and P3 proba-
bilities measured at the same f but different FR values (nj,FR ¼ 7
or 8 depending on P3; we did not use experiments for which P3¼
0 because they made E3,MA/TMA innite). We dened the units of
temperature such that TMA ¼ 1 at f ¼ 120 rpm.33 Fig. 3(a) shows
the dependence of TMA values as a function of agitation
frequency, which could be tted with good accuracy to a power-
law dependence: TMA ¼ 6.3 � 10�6 � f 2.5.

We calculated the energies E2,MA and E3,MA of the C2 and C3
conformations according to eqn (8), where nf is the number of
non-zero probability measurements carried at a given frequency
f (nf¼ 3 or 4). The dependence of the energy levels on FR, shown
in Fig. 3(b), was approximately linear, and the linear depen-
dence extrapolated to zero at FR ¼ 0.95 � 0.03, in approximate
This journal is ª The Royal Society of Chemistry 2013
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agreement with our earlier assumption that the energy levels
were degenerate at FR ¼ 0.9.

Ej;MAðFRÞ ¼ 1

nf

X
f

Ej;MA

TMA

ð f ;FRÞ � TMAð f Þ (8)

To verify the validity of our analogy between our system and a
canonical ensemble, we calculated the probabilities of confor-
mations using the Boltzmann-like distribution (eqn (4)) with
the tted functions shown in Fig. 3 (power-law in f for TMA, and
linear in FR for Ej,MA), and compared them with experimental
measurements. Fig. 4 shows that the Boltzmann-like statistics
provided a good description of the behavior of the system; 38 of
the 48 calculated probabilities fell within one standard devia-
tion of measured probabilities, and 47 of 48 fell within two
standard deviations. Overall, the Boltzmann-like statistics were
most accurate at FR $ 0.6 and f $ 120 rpm.

We believe that the disagreement between the model and
experiments at f ¼ 100 rpm is due to the fact that the spheres
approximated less accurately a thermal bath than at larger
frequencies. Up to agitation frequencies of 80 rpm, the spheres
moved together and their motions were thus well determined;
as f increased above 80 rpm the motions of the spheres became
gradually more randomized, and it is possible that at f ¼ 100
rpm the motions of spheres were not completely randomized.

It is possible that at FR ¼ 0.5 the system was not in a regime
in which the conformation of the chain can be accurately pre-
dicted by a Boltzmann distribution. Below FR ¼ 0.5 the chain
remained extended at all times, and we have shown previously
that the shape of the chain at FR ¼ 0.0 can be described by the
WLC model.21 The fact that two distinct models described the
shape of the chain at low and high lling ratios suggests that
the chain undergoes a phenomenon analogous to a phase
Fig. 4 Comparison between experimental measurements and the predictions of
the Boltzmann-like statistics with experimentally determined “energies” and
“temperatures”, for filling ratios 0.5 # FR # 0.8. The symbols connected by thin
dashed lines are the experimental measurements (also shown in Fig. 2), and the
thick solid lines the predictions of the Boltzmann-like statistics. For clarity, the data
sets for the C1 and C3 conformations have been shifted horizontally, slightly, from
the measurement values, which are shown on the x-axis.

This journal is ª The Royal Society of Chemistry 2013
transition for a lling ratio between 0.0 and 0.5. Such transi-
tions between different coiling regimes, for example the coil-to-
globule transition,34 have been encountered in polymer-solvent
systems.
Discussion

Among the macroscopic parameters in the Boltzmann-like
model, the MecAgit temperature has the clearest relation to
the microscopic temperature, qualitatively and quantitatively.
The power-law proportionality between TMA and f 2.5 reects the
concept that the temperature is a measure of kinetic energy,
because the velocity of the shaking table is proportional to f. The
signicance of the energy levels Ei,MA and of the degeneracy
numbers gi are also qualitatively clear: the energy levels arise
due the mechanical bistability of the conformation of adjacent
links in the chain (i.e., either folded or extended) under random
collisions with the spheres, and the degeneracy numbers reect
the fact that there are more possible “reaction paths” to the
folding of a given conguration than to its unfolding.

The MecAgit energy levels Ej,MA in our system are different
from those of atomic systems because they depend strongly on
FR, while the electronic levels of atoms, molecules, and crystals
depend only weakly on pressure at ambient conditions; relative
changes in the electronic energy levels comparable to those
observed in our MecAgit system are possible, but they require
pressures thousands of times larger than atmospheric pressure.35

The Boltzmann-like statistics provided a signicantly better
t with the measurements when they included the empirical
degeneracy values. For comparison, Fig. S3 in the ESI† shows the
predictions of the Boltzmann model based on thermodynamic
degeneracies, in the same format used in Fig. 4 for the case of
empirical degeneracies. We could not nd a way to calculate a
set of degeneracy values that would agree with the empirical
degeneracies, but we believe that such a calculation would be
dependent on the details of the system. The relative size of the
chain and the spheres or the surface density of spheres might
suppress some of the folding or unfolding mechanisms.
Conclusion

We have developed a new granular system, composed by a chain
surrounded by free spheres in a two-dimensional conguration,
which exhibited a phenomenon analogous to a microscopic
system with discrete energy levels: the distribution of the
probabilities of the different congurations of the system was
mathematically analogous to a Boltzmann distribution. Our
system exhibited a behavior characteristic to non-dissipative
systems, although it was dissipative due to mechanical friction
and inelastic collisions. We believe that the unusual thermo-
dynamic-analogous behavior in our driven granular system is
due to the uniform driving of all objects by the shaking surface,
and due to the randomization of the motion of the chain.
Randomization of the motion of the chain in our system was
achieved by a combination of the aperiodic movement of the
shaking surface with collisions between the chain and inde-
pendently-moving spheres.
Soft Matter, 2013, 9, 4480–4488 | 4487
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The system presented here is a rst attempt to create a
granular system which is analogous to a thermodynamic system
with discrete energy levels, and provides a new parameter for
the “temperature” of a granular system – the MecAgit temper-
ature TMA. A comparison between TMA and the granular
temperature TG characteristic to the spheres would be useful in
determining the applicability and advantages of using TMA and
TG as surrogates for the thermodynamic temperature. For this
study we could not measure the sphere velocities which are
required to calculate TG, because we used a photo camera for
imaging; the maximum rate at which we could record images of
the system was smaller than the rate of collisions between
spheres and than the frequency of agitation.

The system and the results reported here are part of a larger
program in which we aim to physically model microscopic
phenomena at the macroscopic scale. One of the goals of this
program is to build systems that enhance our intuition of
microscopic phenomena, but such systems could be useful
outside the lab as well. The MecAgit system is simple and
inexpensive enough for implementation in classroom teaching,
where physical models have been shown to engage students and
increase their level of understanding.36,37
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