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Experimental Details 

Materials. All monolayer precursors: n-alkanoic acids (CH3(CH2)2nCO2H, n = 1 ‒ 8), 

oligo(phenylene)carboxylic acids (HO2C(C6H4)nH, n = 1 ‒ 3), and n-alkanethiols 

(CH3(CH2)2nCH2SH, n = 1 ‒ 8) are commercially available (≥  96%, Sigma-Aldrich), and all 

carboxylic acids were used as received. All organic solvents were analytical grade (99%, Sigma-

Aldrich) and were used as supplied unless otherwise specified. All thiols used to make SAMs 

were purified by silica-gel column chromatography (using 15% ethyl acetate in hexane, and 

gravity elution). All purified alkanethiols were maintained under a N2 atmosphere at < 4 °C. To 

ensure purity, all stored compounds were checked by 1H NMR prior to use. 

Template-Stripped Silver (AgTS) Substrates. Four hundred‒nanometer thick Ag films were 

electron-beam evaporated onto a single‒side polished n-doped silicon (Si) wafer with <111> 

orientation, and then attached to glass substrates using a photo‒cured optical adhesive (Norland 

Optical Adhesive 61, Nortland Products). The resulting AgTS films are ultrasmooth with an rms 

roughness of 0.5 nm. The low surface roughness significantly increases the yield of working 

junctions. Exact film preparation and characterization is detailed elsewhere.1-3 

Eutectic Gallium-Indium (EGaIn) Top Electrode. EGaIn is non-toxic, non-destructive, easy-

to-handle, and commercially available (99.99%, Sigma-Aldrich). Upon exposure to air, EGaIn 

forms a thin, native gallium oxide film (Ga2O3, with thickness about 0.7 nm) which facilitates the 

fabrication of different shapes with high precision in contact area (50 μm2 on average) and 

enhances the yield of working junctions.4-6 In this study, we used conical-shaped EGaIn top 

electrodes to form electrical contacts in junction measurements.4, 5, 7 

Monolayer Preparation. The preparation of SAMs of n-alkanoates and of n-alkanethiolates on 

Ag follows published procedures;7-11 in brief, freshly prepared AgTS substrates were introduced 
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into the solution of monolayer precursor for 3 hours (1mM of each of the n-alkanoic acids in 

hexadecane or n-alkanethiols in toluene). The preparation of SAMs of oligophenylene 

carboxylates follows the reports published by Tao and coworkers.12, 13 Most of the SAM-bound 

Ag substrates emerged dry from the solution, but surfaces coated with shorter alkane-SAMs or 

aromatic SAMs emerged wet. We rinsed these substrates three times with anhydrous 

hexane/THF or toluene and dried these under a gentle stream of nitrogen. 

Junction Measurements. These measurements were performed in ambient conditions, using 

conical EGaIn top electrodes to make electrical contacts to SAM-bonded Ag substrates.5-7, 14 In 

order to extract the current density (J, in A/cm2), the EGaIn contact area (50 ± 10 μm2) was 

determined from the optically measured diameter. For each monolayer, at least 430 J－V curves 

were measured (3 junctions made by a fresh EGaIn tip, 21 traces measured on a junction) from 3

－4 different substrates. The J(V) measurements were collected in a voltage scan mode between 

+0.5 and -0.5 V, back and forth (0 V +0.5 V 0 V -0.5 V 0 V), in steps of 0.05 V with a 

0.02 second delay between scans.5-7, 10, 14 
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Table S1. Summary of geometric information for SAMs of n-alkanethiolates,15-17 n-alkanoates,9, 

18, 19 and oligophenylene carboxylates12, 13 on Ag (111). The calculation of molecular footprint is 

based on the lattice spacing and SAM overlayer. 

 n-alkanethiolates n-alkanoates oligophenylene carboxylates 

Tilt angle (o) 11-13 15-25 0 

Cell (√7x√7)R10.9 o p(2x2)a p(2x2)a 

Lattice spacing (Å) 4.4b 5.8 10 

Molecular footprint (Å2) 6 6 18 
aOverlayer on Ag; bNearest neighbor spacing. 
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