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In the metal-amplified density assay (MADA), all the beads levitated at the same height

in the developing buffer initially regardless of the concentration of gold-labeled protein that

the beads were exposed to, suggesting that MagLev, at least in the form we implemented, was

not able to detect the binding of gold nanoparticles onto the surface of the beads. The beads

however, changed levitation height in the buffer differently depending on the concentration

of gold-labeled protein that the beads were exposed to. The dependence on the rate of

change of the levitation height on the amount of gold-labeled protein, allowed, when we

used gold-labeled antibody in the detection step, to perform immunoassay with antibodies

and antigens (DeLISA). We obtain a minimal model for the dependence of the change in

levitation height to the concentration of gold-labeled protein in solution by adapting models

developed in the early 1980s for the electrochemical deposition of metals onto electrodes

[1–3]. The model captures the scaling of the time dependence of the change in levitation

height of the beads and demonstrates that the change of levitation height depends on the

number of nanoparticles adsorbed on the surface of the bead and the surface to volume ratio

of the bead.

The Supplementary Information is organized as follows. In Section I we report mea-

surements using ICP-MS of the amount of gold present on the surface of the beads due to

the binding of gold-labeled streptavidin to biotin-labeled beads. We obtained the binding

isotherm by converting the mass data into the number of bound nanoparticles on the surface

of the beads. In Section II we develop the model for the growth of the nanoparticles on the

surface of the bead. In Section III we rederive the equations for the levitation height of

small beads (of arbitrary shape) in the MagLev device from Subramaniam et. al [4], and in

IV we modify the equation to take into account the change in the density of the bead due

to the binding and growth of the gold-nanoparticle labeled proteins.

I. ICP-MS MEASUREMENTS OF THE AMOUNT OF GOLD ON BEADS DUE

TO THE BINDING OF GOLD-LABELED STREPTAVIDIN

Fig.S1 shows schematically the procedure we used to quantify the number of gold-labeled

streptavidin molecules adsorbed onto the surfaces of the beads. Seven beads were placed
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in a known volume of aqua regia. The dilute aqua regia dissolved the metallic gold on the

surface of the beads to yield gold ions in solution. The concentration of gold ions were then

quantified with ICP-MS.

Fig. S1. Schematic of procedure for measuring the amount of gold deposited onto the

beads.

1. Binding characteristics of gold-labeled streptavidin to biotin-labeled beads

We exposed seven biotin labeled beads each to varying concentrations of gold-labeled

streptavidin and then quantified the amount of gold that was present on the surface of

the beads. Fig. S2A shows a plot of the concentration of Au3+ versus the concentration

of free gold-labeled streptavidin in the sample. It is clear that the concentration of Au3+

released from the surface of the beads increased as a function of the concentration of gold-

labeled streptavidin in solution. We converted the concentration data into the number of

nanoparticles using Equation 1.

N0 =
[Au3+]VAR
NB

4
3
ρAuπr3

np

(1)

In this equation VAR is the volume of aqua regia used to dissolve the gold, NB = 7 is the

number of beads used, rnp = 5 nm is the radius of the nanoparticles, and ρAu = 19.3 g/cm3
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is the density of gold.

Fig. S2. The binding isotherm of gold-labeled streptavidin to biotin-labeled beads. A)

Plot showing the concentration of gold released from the beads into the dilute aqua regia vs

the concentration of free gold-labeled streptavidin that the beads were exposed to. B) Plot

showing the concentration of surface bound gold nanoparticles vs the the concentration of

free gold-labeled streptavidin. The red continuous lines are fits of Eq. 4 to the data. The

inset show the binding isotherm on a semi-log scale.

Fig. S2b shows the concentration of gold nanoparticles, [Aunp], bound to the surface of

the bead versus the concentration of free gold-labeled streptavidin in solution. The right

axis shows the number of particles per bead. The inset shows the data plotted with the

x-axis on a log scale.

Streptavidin is capable of binding four biotin molecules in solution [5, 6]. To model

our data, we make the assumption that one streptavidin protein binds to a single biotin

ligand. We return to this assumption later in this section to show that this assumption is

valid within the context of our system. With this assumption, we apply the Law of Mass

action to obtain a relation between the concentration of nanoparticles bound to the surface,

[SB] versus the concentration of free gold-labeled streptavidin [S] (Equation 2). [B] is the

concentration of biotin on the surface of the beads, which is not known a priori.
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[S] + [B]
ka−−⇀↽−−
kd

[SB] (2)

In this equation ka and kd are the association and dissociation rate constants, respectively.

The equilibrium dissociation constant Kd is given by Equation 3.

Kd =
kd
ka

=
([S]0 − [SB])([B]0 − [SB])

[SB]
(3)

In this equation [S]0 is the initial concentration of streptavidin in the sample and [B]0

is the total concentration of immobilized biotin ligands. We solve for the concentration of

immobilized complex [SB] to obtain Equation 4.

[SB] =
[S]0 + [B]0 +Kd

2
−
√

([S]0 + [B]0 +Kd)2

4
− [S]0[B]0 (4)

We fitted Equation 4 to our experimental data in the nonlinear least square sense using

the curve fitting program Origin Pro (version 8.5, OriginLab) to determine the two unknown

parameters Kd and [B]0. The equation fitted the data well (red continuous lines). The value

of Kd = 8.5 × 10−10M−1 compared favorably with measurements done on other systems

of the binding of biotin to streptavidin modified surfaces [7, 8].Note that conjugation of

streptavidin with fluorophores, DNA, or solid surfaces decreases the Kd by about 4-5 orders

of magnitude below the measured Kd ≈ 10−14M−1 of biotin interacting with free streptavidin

in solution [7, 8]. In contrast, antibodies have Kd that range from 10−6M−1 to 10−12M−1 [9].

As an additional check, we calculated the distance between biotin binding sites on the

surface of the beads. Our fitted value to the data indicated that the number of biotin

molecules on the surface was 6.4× 107. For beads with a diameter of 600 micrometers with

an area of 1.13×10−6 m2, that leads to a surface density of 1.77×10−14 biotin molecules/m2.

We take the square root of this value to estimate the distance between the biotin molecules

to be of the order of 130 nm.

Since a streptavidin molecule is about 5 nm in diameter � 130 nm; a single streptavidin

molecule can bind only to one biotin molecule on the surface. Furthermore, since the gold

nanoparticles are 10 nm in diameter, each gold nanoparticle can only be bound to on average

one biotin binding site; nanoparticles bridging two biotin binding sites is highly unlikely. We

thus conclude that it is reasonable to use the Law of Mass Action to model the equilibrium
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dynamics of gold-labeled streptavidin to biotin labeled beads.

II. KINETICS OF GROWTH OF THE NANOPARTICLES IN THE DEVELOP-

ING BUFFER

The rate of growth of the nanoparticles that are adsorbed on the surface of the beads in

the developing buffer determines the rate of change of the levitation height of the beads in

the MagLev device. We wished to thus obtain a model of the growth of the nanoparticles.

In a MADA, N0 = NS (N0 is the total number of nanoparticles, N is the number of

nanoparticles per unit area (number/m2), and S is the total surface area of the bead (m2)),

gold nanoparticles are immobilized onto the surface of beads through specific biomolecular

recognition events. The number of nanoparticles on the surface of the bead varies with the

concentration of analyte that was present in the sample being assayed. In the developing

buffer, these nanoparticles serve as nuclei that catalyze the deposition of metallic gold from

solution onto the bead. Physically, the nanoparticles increase in volume as metal deposits on

their surfaces. This process is typically diffusion-limited. As the radius of the nanoparticles

increase, neighboring nanoparticles eventually touch (Fig. 3A in the main text). Further

growth leads to the formation of a film of gold on the surface of the bead.

The mass flow rate of reactants, ṁ (kg/s) due to the diffusion-limited growth of a hemi-

spherical nucleus is given by equation 5[1–3]. The boundary conditions are c(∞, t) = c̄,

c(0, t) = 0 (ions are instantaneously reduced on the surface of the nanoparticle). In this

equation, c(r, t) is the concentration of reactant (for simplicity we assume [Au3+]) and c̄,

(mol m−3) is the bulk concentration of reactant.

ṁ1 =
(2DcM)3/2t1/2

ρ1/2
(5)

In this equation, ρ is the density of the deposited material (kg m−3), M is the molar mass

of the deposit (kg mol−1), and D is diffusion coefficient of the reactant (m2 s−1).

For an array of N nuclei growing independently on a flat surface, the net mass flow rate

is given by a sum of the mass flow rates to each nuclei (Equations 6, 7).

ṁN =
N∑
1

ṁi (6)
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ṁN =
Nπ(2DcM)3/2t1/2

ρ1/2
(7)

In a MADA, the number of nanoparticles on the surface could be of high enough density

that the growing particles interact with each other. The competition for reactants by the

growing nanoparticles results in locally lower concentration of reactants to the growing

nuclei. The lower concentration could lead to a slower growth rate than that expected from

equation 7.

Following [1–3] a hemispherical ‘diffusion’ zone radiating from a nanoparticle grows at a

radial velocity such that its radius, l(t), is described as a function of time by Equation 8.

l(t) = (kDt)1/2 (8)

In this equation k is a numerical nondimensional constant that is specified by experi-

mental conditions. Equation 8 can be expressed in the form of Equation 9, which describes

the change in area of a circular disk (diffusion zone), S(t) with the same radius as the

hemispherical nuclei.

S(t) = πl2(t) = πkDt (9)

If at t=0, N nanoparticles were present on the surface per unit area, then, the total size

of the diffusion zones for all the nanoparticles on the surface of the bead at time, t is given

by Equation 10.

θex = NπkDt (10)

In this equation, θex is the fraction of the area covered by the diffusion zones without

taking overlap into account. If the N centers are randomly distributed on the surface of the

bead, the actual fraction of area covered (which is smaller due to the overlap) can be related

to θex, by the Avrami equation θ = 1− exp(−θex).

The coverage of the surface of the bead by the growing nanoparticles is thus given by

Equation 11.

θ = 1− exp(−NπkDt) (11)
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The radial flux density through the boundaries of the diffusion zones will be given by

the equivalent planar diffusive flux to a surface of fractional area θ. Conservation of mass

requires that the amount of material entering the diffusion zones be equal to the amount

being incorporated into the growing nanoparticles (we assume that the interfacial kinetics

is instantaneous). The mass current to the whole surface is therefore given by Equation 12.

ṁN =
SMD1/2cθ

π1/2t1/2
=
SMD1/2c

π1/2t1/2
[1− exp(−NπkDt)] (12)

We define a ‘characteristic time’ τ = 1
NπkD

and the constant C1 = MD1/2c
π1/2 and rewrite the

equation for the mass current on the surface of the bead as Equation 13.

ṁN =
SC1

t1/2

[
1− exp(− t

τ
)

]
(13)

The quantity that we are interested in, the mass of gold as a function of time is given by

Equation 14.

mN =

∫ t

0

ṁN dt (14)

At early times (small t), t� τ , and 1− exp(− t
τ
) ' t

τ
.

mN,t�τ =

∫ t

0

ṁN dt

=
SC1

τ

∫ t

0

t1/2 dt

=
2SC1

3τ
t3/2

=
2

3
NSMkcD3/2π1/2t3/2 (15)

When t is large, t� τ , and and 1− exp(− t
τ
) ' 1
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mN,t�τ =

∫ t

0

ṁN dt

= SC1

∫ t

0

1

t1/2
dt

= 2SC1t
1/2 (16)

An expression for k can be obtained by noting that the current for t→ 0 must be identical

to that flowing to N isolated hemispherical nuclei [1–3], i.e. as described by Equation 7.

k = (8πcM/ρ)1/2 (17)

By observing these two asymptotic limits, we observe that at early times, the number

of nanoparticles on the surface of the bead is important, while at later times, when a film

has formed on the surface the mass incorporation is akin to that of a planar surface. The

characteristic time τ determines the cross over between when the particles can be modeled

as independently growing nuclei to when their growth rate is affected by neighbors.

We also note that τ ∝ 1
N

. Thus for larger values of N , the growth rate of the nanoparticles

will be affected by the presence of their neighbors sooner.

III. EQUILIBRIUM LEVITATION HEIGHT OF A BEAD IN THE MAGLEV

Following [4] the general form of the total potential energy density (energy per unit

volume), u, of the MagLev system is given by Equation 18.

u = umag + ugrav

= − 1

2µo
∆χ(~r) ~B2 −∆ρ(~r)~g · h (18)

In this equation, umag is the magnetic contribution and ugrav is the gravitational contri-

bution to the total potential energy density, ∆χ = χo(~r)− χs is the magnetic susceptibility

of the object relative to a homogenous medium, ∆ρ(~r) = ρo(~r) − ρs is the density of the

object relative to a homogenous medium, and h = (0, 0, h) is the height of the object. In
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general, the object can be heterogeneous in both density and magnetic susceptibility such

that these functions depend on the position coordinate r. Note that taking the negative

of the derivative of ugrav and umag with respect to z gives the magnetic and gravitational

forces.

In a MADA a material that has different properties than the material that composes

the bead is deposited onto the surface of the beads. The reactants are in vast excess in

the developing buffer thus we assume that the magnetic susceptibility of the object and the

medium does not change significantly throughout the course of a typical assay.

At static equilibrium, the potential energy, U =
∫
V
u dV , where V is the volume of the

object, has to be minimized.

The equilibrium levitation height, h will occur where ∂U
∂h

= 0.

h =
gµod

2

4∆χB2
o

(ρ− ρbuffer) +
d

2
(19)

IV. THE CHANGE IN DENSITY OF THE BEAD IN A MADA

Equation 20 gives the total mass of the bead a function of time in the developing buffer,

mtot(t), and Equation 21 gives the density, ρtot(t)of the bead.

mtot(t) = mbead +mN(t) = ρbeadV +mN(t) (20)

ρtot(t) =
ρbeadV +mN(t)

V
(21)

For equation 21 we made the assumption that the volume of the bead, V � volume of

the deposited metal.

Equation 22 gives the levitation height of the bead, due to the deposition of metal on the

surface of the bead.
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h(t) =
gµod

2

4∆χB2
o

(ρtot(t)− ρbuffer) +
d

2

=
gµod

2

4∆χB2
o

(
ρbeadV +mN(t)

V
− ρbuffer

)
+
d

2

=
gµod

2

4∆χB2
o

(
(ρbead − ρbuffer) +

mN(t)

V

)
+
d

2

= Φ′1
mN(t)

V
+ Φ2 (22)

For the final step we define two constants, Φ′1 = gµod2

4∆χB2
o

and Φ2 = Φ′1(ρbead − ρbuffer) + d
2
.

Examining Equation 22 we see that for a bead that is density matched with the buffer,

Φ2 = d
2
.

At the start of the development period, we expect that levitation height should evolve

according to Equation 23.

h(t) = Φ1N
S

V
t3/2 + Φ2 (23)

In this equation, Φ1 = gµod2MkcD3/2π1/2

6∆χB2
o

.

For a given t, h(t) is larger for large N. Furthermore, h(t) depends on the surface area to

volume ratio, S/V . Thus everything else being equal, using particles of larger SA:V ratio

should result in a more sensitive assay.
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Fig. S3. Example of a silver metal-amplified density assay, AgMADA. Goat im-

munoglobulin G was immobilized covalently on the surface of the beads, which were colored

blue. The beads were exposed to serial dilutions of 10-nm gold-labeled anti-goat IgG and

then placed in a developing buffer prepared with a silver amplification reagent purchased

form Sigma-Aldrich. Like the AuMADA, beads that were exposed to higher concentrations

of gold-labeled proteins changed levitation height faster. Unlike gold amplification however,

the electroless silver deposition bath was unstable, and eventually metallic silver precipitates

from the solution, seen as the change in color of the solution to brown. Large precipitates

sediment to the bottom of the capillary. The decrease in the concentration of silver ions

decreases the density of the solution and hence all beads, including the bead that was not

exposed to gold-labeled antibody, fall to the bottom of the capillary after 42 minutes. Scale

bar 0.5 mm
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