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Experimental Details 

Materials. All monolayer precursors—HO2C(CH2)nH (O2C-Cn; n = 4, 6, 8, 10), 

HO2C(C6H4)m(CH2)nH (O2C-PhmCn; m = 1, 2 and n = 2, 4, 6, 8), HO2C(CH2)2n(C6H4)mH (O2C-

CnPhm; m = 1, 2 and n = 2, 4, 6, 8), HO2C(CH2)2(C6H4)(CH2)2H (O2C-C2PhC2), and 

HO2C(C6H4)-X-(C6H4)H (X = ethylene (‒CH2CH2‒; O2C-PhCH2−CH2Ph), vinylene                

(‒CH=CH‒; O2C-PhCH=CHPh), and acetylene (‒C≡C‒; O2C-PhC≡CPh))—are commercially 

available (Alfa Aesar; Wako Chemicals; Oakwood Chemical; Santa Cruz Biotechnology; Sigma-

Aldrich; TCI), and all carboxylic acids  (% purities are equal or above  95%) were used as 

received. All organic solvents were analytical grade (99%, Sigma-Aldrich) and were used as 

supplied unless otherwise specified. 

SAMs of Organic Carboxylates on Ag(/AgOx) as Model Systems for Studying Tunneling. 

Most studies of charge transport—using single-molecule or large-area junctions—commonly use 

SAMs of organic thiolates on Au or Ag.
1-4

 Due to the limited number of readily available organic 

thiols/thiolates, and the difficulties of working with these compounds (which are oxygen-

sensitive and highly nucleophilic), molecular systems based on the thiolate anchoring group have 

been largely restricted to simple molecular structures. Carboxylic acids were clearly identified by 

collective work of Allara, Nuzzo, and Tao as a class of molecules that formed stable, ordered 

SAMs on Ag.
5-8

 Since a very wide range of organic carboxylic acids are easily obtained (either 

commercially or through synthesis), and both these compounds and SAMs on silver are very 

stable to oxidation, they made excellent subjects for physical-organic studies of tunneling.  

Preparation of SAMs. The preparation of SAMs of organic carboxylates on Ag follows 

published procedures:
8-10

 In brief, SAMs were formed by introducing freshly prepared template-

stripped silver (Ag
TS

) substrates
11

 into a solution of the carboxylic acid (1 mM) in equal volume 
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mixture of anhydrous tetrahydrofuran (THF) and n-hexadecane for 5 minutes at ambient 

conditions. The resulting SAMs were washed three times with anhydrous THF (1 mL each time), 

and dried under a gentle steam of nitrogen.  

Junction Measurements. We use “selected” unflattened conical EGaIn
12

 to contact the surface 

of SAM-bound Ag
TS

.
11,13

. In order to extract the current density (J, in A/cm
2
), the EGaIn contact 

area (1500 ± 150 μm
2
) was determined from the diameter of the contact region estimated by the 

optical microscopy.
14-16

 For each monolayer, at least 280 J－V curves were measured (three 

junctions made by a fresh EGaIn tip, 21 traces measured on a junction) from three different 

substrates.
16,17

 The J(V) measurements were collected in a voltage scan mode between +0.5 and 

−0.5 V, back and forth (0 V +0.5 V; +0.5 V  0 V; 0 V −0.5 V; −0.5 V  0 V), in steps of 

0.05 V with a 0.02 second delay between scans.
13,15,17-19

 We calculate the yield of working 

junctions by dividing the number of non-shorting junctions by the total number of measured 

junctions (x 100).
17,19

 The junction measurements of O2C-Cn, O2C-Phm, O2C-C2Ph, and O2C-

C4Ph were published elsewhere.
10,20
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Figure S1. Log-current density (log|J|) versus bias (V) for junctions of the form             

Ag
TS

O2C-PhmCn//Ga2O3/EGaIn (m = 0, 1, 2 and n = 0, 2, 4, 6, 8, 10) with increasing chain 

lengths. Rectification of current was not observed. 
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Figure S2. Log-current density (log|J|) versus bias (V) for junctions of the form            

Ag
TS

O2C-CnPhm//Ga2O3/EGaIn (m = 1, 2 and n = 0, 2, 4, 6, 8) with increasing chain lengths. 

Rectification of current was not observed. 
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Figure S3. Histograms of log|J| data derived from (a) O2C-Cn, (b) O2C-PhCn, and (c)          

O2C-Ph2Cn (n = 2, 4, 6, 8, 10) at −0.5 V. Each histogram is fitted with a Gaussian curve (black 

curve).  
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Figure S4. Histograms of log|J| data derived from (a) O2C-CnPh, and (c) O2C-CnPh2 (n = 2, 4, 

6, 8) at −0.5 V. Each histogram is fitted with a Gaussian curve (black curve). 
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Table S1. Calculated HOMO and LUMO energies of the selected carboxylate anions using 

density function theory (DFT B3LYP/6-31G+(d, p)). 

 

Molecule HOMO (eV) LUMO (eV) 

[O2C(C6H4)2H]
‒
   

*The dihedral angle of two 

phenylene rings is 37.26 degrees. 

  

 -1.708 1.461 

[O2C(C6H4)(CH2–CH2)(C6H4)H]
‒
   

*Two phenylene rings are 

coplanar.   

 -1.674 1.269 

*Two phenylene rings are 

perpendicular.   

 -1.672 1.250 

[O2C(C6H4)(CH=CH)(C6H4)H]
‒
   

*Two phenylene rings are 

coplanar.   

 -1.902 0.608 

[O2C(C6H4)(C≡C)(C6H4)H]
‒
   

*Two phenylene rings are 

coplanar.   

 -1.899 0.807 

*Two phenylene rings are 

perpendicular.   

 -1.951 0.697 
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Transmission Theory for Molecular Series Junctions 

In a MMM junction, charge crosses a tunneling barrier whose energetic topography is not 

exactly known, but is determined by the insulating molecular component (e.g., the SAM) 

between the two metallic contacts. In principle, one approach to measuring the relative height of 

the tunneling barrier in a MMM junction is to study β systematically for each functional group 

that influences the barrier topography (and thus the rate or mechanism of charge transport) and to 

use these values to estimate energetic topography of the HOMO.  

Here, we derive the rules for a molecular series circuit using two different approaches: 1) a 

potential barrier model along with the wavefunction method; 2) a tight-binding model together 

with the Green’s function method. 

Modeling of Experimental Setup. In order to model the Ag
TS

/molecule//Ga2O3/EGaIn junction, 

we assume that each part of the junction, i.e., Ag
TS

, the molecule, Ga2O3/EGaIn, is isolated, but 

we regard the combination of the molecule and its interfaces as a whole (corresponding to 𝑅2). 

Thus, the experimental setup can be expressed as three individual resistors connected in series 

(Figure S5). 

From a macroscopic perspective, the three parts connected in series have an overall resistance of 

R1 + R2 + R3, and the current flux J is equal to the current 𝐼 divided by the area 𝐴 (eq. S1), 

𝐽 =
𝐼

𝐴
=

𝑉𝑆𝐷

(𝑅1+𝑅2+𝑅3)𝐴
                                                                                                                            Eq. (S1)  

and can reduce to the form in eq. S2, since the molecule is considered as an insulating layer 

which  resistance is much larger than that of the electrodes (i.e., 𝑅2 ≫ 𝑅1, 𝑅3). 

𝐽 ≅
𝑉𝑆𝐷

𝑅2𝐴
                                                                                                                                                   Eq. (S2)   
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Figure S5. The whole system is divided into three parts: bottom electrode, molecule (including 

its interfaces with the electrodes), and top electrode. Note that the molecules consist of two 

molecular backbone units: units 𝑎 and 𝑏 (not shown). 
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Note that the length of the molecule and its interfaces is approximately a few nanometers, so that 

𝑅2 (Figure S6) should be modeled using quantum mechanics.   

Quantum Tunneling and Landauer Formula. Many reports of electron transport at the single-

molecule level (< 3~4 nm)
21-25

 have shown that the mechanism of charge transport is based on 

quantum tunneling. At a low bias limit, the conductance 𝑔 is proportional to the transmission 

function 𝑇(𝐸𝐹)(eq. S3),
26-30

  

𝑔 ≈
2𝑒2

ℎ
𝑇(𝐸𝐹) = 𝑔𝑄𝑇(𝐸𝐹) ,                                                Eq.  (S3) 

where ℎ is Planck’s constant, 𝑒 is the elementary charge, 𝑔𝑄 is the so-called conductance 

quantum, and 𝐸𝐹 is the Fermi level of the electrodes. As a result, for a single molecule, we define 

current as 

 𝐼′ ≈
𝑉𝑆𝐷

𝑅2
= 𝑔𝑉 =

2𝑒2𝑉𝑆𝐷

ℎ
𝑇(𝐸𝐹).                                              Eq. (S4) 

For an assembly of molecules in the form of a SAM, there are 𝑁 molecules in an area 𝐴; when 

we assume that charge carriers travel along chemical bonds and neglect electron transfer laterally 

between neighboring molecular wires, we obtain the following equation  

 𝐽 =
𝐼

𝐴
=

∑ 𝐼𝑚
′𝑁

𝑚=1

𝐴
=

1

𝐴

2𝑒2𝑉𝑆𝐷

ℎ
∑ 𝑇𝑚(𝐸𝐹)𝑁

𝑚=1 ,                                 E q .  ( S 5 ) 

where the index 𝑚 stands for the m-th molecule. For simplicity, we assume all molecules are 

identical (the variation in the contacts with the metal electrode can be eliminated because it is an 

average effect), i.e., 𝐼𝑚
′ = 𝐼′ and 𝑇𝑚(𝐸𝐹) = 𝑇(𝐸𝐹), so we can derive 

𝐽 =
𝑁

𝐴

2𝑒2𝑉𝑆𝐷

ℎ
𝑇(𝐸𝐹).                                                     Eq .  (S6) 
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Eq. S6 indicates that the key issue of computing 𝐽 is how to derive the transmission function 

T(EF). 

Method I: A Potential Barrier Model along with the Wavefunction Method 

To model electron transport through the SAM and compute the transmission functions, first, we 

considered a potential barrier model. The validity of the potential barrier model is based on two 

assumptions. i.) The tunneling electron does not interact with other degrees of freedom in the 

molecules, such as phonons (i.e., we assumed coherent elastic tunneling, where “coherent” 

means no phase loss and “elastic” means no energy loss of electrons). Note that this assumption 

works well only for short molecules having a large gap between the HOMO (LUMO) and the 

Fermi level of the electrodes. ii) The electrons in molecules do not interact with each other (an 

independent electron approximation). Applying this assumption reduces the many-electron 

Schrodinger equation to an effective single-electron Schrodinger equation, and electrons and 

nuclei in the SAM can be modeled as potential barriers. Based on these assumptions, the central 

part can be modeled as shown in Figure S6. 
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Figure S6. A multi-barrier model. Region 1 (6), 2 (5), and 3(4) correspond to the electrode, 

interface, and the unit of SAM in Fig 1. 𝑑0, 𝑑1, 𝑑2, and 𝑑3 are the length of the interface 1,unit 𝑎, 

unit 𝑏, and interface 2. 𝑉0, 𝑉1, 𝑉2, and 𝑉3 stand for the potential barriers of the interface 1, unit 𝑎, 

unit 𝑏, and interface 2. 𝑉𝑆𝐷 is the source-drain voltage. Blue and red arrows indicate the forward 

and backward fluxes of a tunneling charge carrier. The two-way arrows (blue and red) represent 

the incident flux and the one-way arrow (blue) represents the transmitted flux. 
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According to Figure S6 and the Schrodinger equation 𝐻𝜓 = 𝐸𝜓, where 𝐸 is the energy of the 

tunneling electron, we assume the forms of the wavefunction in these five regions are  

Region 1:   𝜓1 = 𝐶1 exp(𝑖𝑘0𝑥) + 𝐶2 exp(−𝑖𝑘0𝑥), where     𝑘0 =
√2𝑚𝐸

ℏ
                          Eq. (S7)    

Region 2:   𝜓2 = 𝐶3 exp(𝑖𝑘1𝑥) + 𝐶4 exp(−𝑖𝑘1𝑥), where     𝑘1 =
√2𝑚(𝐸−𝑉0)

ℏ
                  Eq. (S8) 

Region 3:   𝜓3 = 𝐶5 exp(𝑖𝑘2𝑥) + 𝐶6 exp(−𝑖𝑘2𝑥), where   𝑘2 =
√2𝑚(𝐸−𝑉1)

ℏ
                   Eq. (S9) 

Region 4:   𝜓4 = 𝐶7 exp(𝑖𝑘3𝑥) + 𝐶8 exp(−𝑖𝑘3𝑥), where   𝑘3 =
√2𝑚(𝐸−𝑉2)

ℏ
                   Eq. (S10) 

Region 5:   𝜓5 = 𝐶9 exp(𝑖𝑘4𝑥) + 𝐶10 exp(−𝑖𝑘4𝑥), where   𝑘4 =
√2𝑚(𝐸−𝑉3)

ℏ
                   Eq. (S11) 

Region 6:   𝜓6 = 𝐶11 exp(𝑖𝑘5𝑥), where   𝑘5 =
√2𝑚(𝐸+𝑉𝑆𝐷)

ℏ
                                             Eq. (S12) 

Using the flux conservation (the continuity of the first derivative of the wavefunction) and the 

continuity of the wavefunction, solving equations S7 to S12 gives 𝐶1~𝐶11. 

The transmission function can be expressed in terms of the incident probability current 𝑗𝑖𝑛𝑐 and 

the transmitted probability current 𝑗𝑡𝑟𝑎𝑛𝑠,
28

 

𝑇(𝐸) =
𝑗𝑡𝑟𝑎𝑛𝑠

𝑗𝑖𝑛𝑐
.                                                   E q .  ( S 1 3 ) 

According to quantum mechanics,
28

 the probability current 𝑗 is 

𝑗 =
ℏ

2𝑚𝑖
(𝜓∗ 𝑑𝜓

𝑑𝑥
−

𝑑𝜓∗

𝑑𝑥
𝜓) .                                           E q .  ( S 1 4 ) 

Solving equations S7 to S12 using the wavefunction continuity and its first derivative continuity, 

and substituting eq. S7 and eq. S12 into eq. S14 give 𝑗𝑖𝑛𝑐 and 𝑗𝑡𝑟𝑎𝑛𝑠. Moreover, substituting 𝑗𝑖𝑛𝑐 

and 𝑗𝑡𝑟𝑎𝑛𝑠 into eq. S13 provides the transmission function. 
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Following calculation, we can derive a closed form of the transmission function. Here, we 

employ the last assumption: the energy of charge carriers is much smaller than the height of 

potential barrier (𝐸 = 𝐸𝐹 ≈ 0); that is, if 𝑘1, 𝑘2, 𝑘3, and 𝑘4 in equations S8 to S11 can satisfy 

2𝑘𝑚𝑑𝑚 ≫ 1, where 𝑚 = 1, 2, 3 and 4, we can approximate the transmission function as 

following,    

𝑇(𝐸𝐹) =
210×𝑉1𝑉2𝑉3𝑉𝑆𝐷

(√𝑉0+√𝑉1)
2

(√𝑉1+√𝑉2)
2

(√𝑉2+√𝑉3)
2

(𝑉3+𝑉𝑆𝐷)
exp(−𝜙) exp(−𝛽1𝑑1 − 𝛽2𝑑2).      Eq. (S15)                                                                                                                                       

where 𝜙, 𝛽1, and 𝛽2 can be expressed as follows 

𝜙 =
2√2𝑚𝑉0

ℏ
𝑑0 +

2√2𝑚𝑉3

ℏ
𝑑3  ,                                                 Eq. (S16) 

𝛽1 =
2√2𝑚𝑉1

ℏ
 ,                                                              Eq. (S17) 

𝛽2 =
2√2𝑚𝑉2

ℏ
 ,                                                              Eq. ( S18) 

Substituting equations S15 to S18 into eq. S6, we can derive the current flux. For convenience, 

we replace the indices 1 and 2 in eq. S19 with the indices  𝑎 and 𝑏 in order to represent unit a 

and b. 

𝐽 = 𝐽0 exp(−𝛽𝑎𝑑𝑎 − 𝛽𝑏𝑑𝑏) ,                                              Eq.  ( S19) 

𝐽0 =
𝑁

𝐴

2𝑒2𝑉𝑆𝐷

ℎ

210×𝑉1𝑉2𝑉3𝑉𝑆𝐷

(√𝑉0+√𝑉1)
2

(√𝑉1+√𝑉2)
2

(√𝑉2+√𝑉3)
2

(𝑉3+𝑉𝑆𝐷)
exp(−𝜙).                    Eq.  (S20) 

Note: The calculated values of V, however, are generally overestimated, compared to the 

experimentally derived values of β. Frisbie et al.
31

 reported that the effective barrier (V) should 

be described as an integration over many barriers (a result of the mixing of molecular orbitals 
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and metal electrodes), and as an effective barrier to transport, according to the density of states 

(DOS) theory.
32

 

Method II: A Tight-Binding Model along with the Green’s Function Method 

Compared with method I, method II is more general and allows us to consider coherent inelastic 

tunneling, many-body interactions, light-driven transport, and the influence of the electrodes by 

introducing self-energy. Here, we do not consider coherent inelastic tunneling, many-body 

interactions, and light-driven transport, but instead consider the influence of the electrodes on the 

circuit rule. Therefore, our goal is to show that eq. S11 can be derived using different approaches 

and the result is independent from the methodology. 

In the framework of the single-particle Green’s Function method, the transmission function can 

be computed using 𝑇(𝐸) = 𝑇𝑟(Γ1(𝐸)𝐺𝑚𝑜𝑙
𝑅 (𝐸)Γ2(𝐸)𝐺𝑚𝑜𝑙

𝐴 (𝐸))[6]—[9], where 𝐺𝑚𝑜𝑙
𝑅(𝐴)

 (𝐸) =

(𝐸 − 𝐻𝑚𝑜𝑙 − Σ1
𝑅(𝐴)

(𝐸)  − Σ2
𝑅(𝐴)

(𝐸))
−1

 stands for the retarded (advanced) molecular Green’s 

function and Γ1(2)(𝐸)  =  𝑖(Σ1(2)
𝑅 (𝐸) − Σ1(2)

𝐴 (𝐸)) represent the coupling function of the electrode 

1(2), where Σ1(2)
𝑅(𝐴)

(𝐸) are the retarded (advanced) self-energy contributed from the electrode 1(2). 

To facilitate the analysis, we adopted a tight-binding model to describe the SAM. The SAM 

based on two different molecular backbone units 𝑎 and 𝑏, e.g., a alkyl chain and a phenyl chain, 

is modeled as shown in Figure S7. The molecular Hamiltonian can be described by eq. S21, 

                           Eq. (S21) 
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where 𝜖𝑙(𝑟) is the on-site energy of the left (right) anchor group, ϵa(b) stands for the on-site 

energy on the unit of the backbone 𝑎(𝑏) which has the number of units 𝑁𝑎 (𝑁𝑏). The total 

number of sites is 𝑁 = 𝑁𝑎 + 𝑁𝑏, 𝑡𝑎(𝑏) is the resonance integral between the sites on the 

backbone 𝑎(𝑏), 𝑡𝑎,𝑏 is the resonance integral between the sites on the backbone 𝑎 and 𝑏, and 

𝑡𝑚,𝑚′ is the resonance integral between the site 𝑚 and 𝑚′ (Note that 𝑚(𝑚′) = 1, 𝑁, 𝑙, 𝑟). 
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Figure S7. A tight-binding model of the central part. 
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Because the molecular backbone units are not directly coupled to electrodes 1 and 2, we assume 

that the self-energy, contributed by the electrodes, only interacts with the anchor groups ( i.e., 
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Δ1(2)(𝐸) is the real part of the self-energy of electrode 1 (2), which corresponds to an energy 

shift resulting from the electrodes; Γ1(2)(𝐸) is the imaginary part of the self-energy of electrode 1 

(2), which is related to a tunneling rate between electrode 1 (2) and the left (right) anchoring 

group). At a low bias limit, the self-energy can be regarded as a constant, i.e., Δ1(2)(𝐸) = Δ1(2), 

Γ1(2)(𝐸) = Γ1(2), and Σ1(2)
𝑅 (𝐸) = Σ1(2)

𝑅 . By using equations S12 and S13, the retarded molecular 

Green’s function can be represented in a matrix form, 

. 

In a weak coupling and large gap limit, i.e., min |𝐸 − 𝜀𝑚 − Σ1(2)
𝑅 | ≫ max |𝑡𝑚,𝑚′|, (𝐺𝑚𝑜𝑙

𝑅 )𝐿,𝑅 can 

be approximated as  
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By using Eq. (24), we can derive the transmission function 
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Substituting eq. S25 into eq. S6, we can derive the current flux through the total system 
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Eq. (S26) 

In fact, eq. S26 can correspond to eq. S18.We rewrite eq. S26 as follows 

                                                )exp(0 bbaa ddJJ                                                          Eq. (S19) 

                           
22

2

,

2

,2

2

,,2

2

,1

2

1,,1
2

0
||||

||

|)(|

||)(

|)(|

||)(2

ba

ba

rr

R

RF

RNrr

ll

R

LF

lllSD

tt

t

E

t

E

t

h

Ve

A

N
J 












               Eq. (S27) 

                                                       a

aF

a

a
a

t

E

d

N 



 ln

2

                                                        Eq. (S28) 

                                                       b

bF

b

b
b

t

E

d

N 



 ln

2

                                                        Eq. (S29) 

Method II implies that eq. S19 is insensitive to the electrodes in the weak coupling and large gap 

limit. The weak coupling means that the resonance integral between monomers (units) is weak 

and the large gap means that the energy level on each monomer (unit) is far away from the Fermi 

level. Note that the conditions of these two approximations (methods I and II) seem different, but 

they conclude similarly. For example, the conditions of method I do not specify the extent of 

electronic couplings between the units in the molecule. However, the assumption that the 

potential barriers of the two molecular units are independent to the identity of the neighboring 

units defines a weak electronic coupling between the units. Note that in the experiment results, 
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(S19) does not hold in serial molecular segments which have strong interactions, consistent with 

the assumption of the two approaches. In addition, method I cannot include the effects of 

electrodes while the method II can.  The method II successfully explains that the influence of the 

electrodes. 

By using the definition of resistance, S26, and S27, and (for simplicity) assuming that 𝑁𝑎 =

𝑁𝑏 = 1, we can derive 

𝑅 =
𝑉𝑆𝐷

𝐽𝐴
=

𝑉𝑆𝐷

𝐽0𝐴
|

𝐸𝐹−𝜖𝑎

𝑡𝑎
|

2

|
𝐸𝐹−𝜖𝑏

𝑡𝑏
|

2

                                                                                        Eq. (S 30) 

The resistance of a molecular segment can be defined as
33

 𝑅𝑎 = 𝑅𝑄 |
𝐸𝐹−𝜖𝑎

𝑡𝑎
|

2

and 𝑅𝑏 =

𝑅𝑄 |
𝐸𝐹−𝜖𝑏

𝑡𝑏
|

2

, 

S 30 becomes 

𝑅 =
𝑉𝑆𝐷

𝐽0𝐴

𝑅𝑎

RQ
×

𝑅𝑏

𝑅𝑄
∝

𝑅𝑎

RQ
×

𝑅𝑏

𝑅𝑄
∝ 𝑅𝑎 × 𝑅𝑏                                                                             Eq. (S 31)                                                               

Where RQ = gQ
-1

. S31 is consistent with the results reported in previous studies,
34-36

 that in a 

quantum tunneling, the total resistance of a molecular junction is proportional to the product of 

the individual molecular units.  
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