Supporting Information

Tunneling across SAMs Containing Oligophenyl Groups

Carleen M. Bowers,^a Dmitrij Rappoport,^a Mostafa Baghbanzadeh,^a Felice C. Simeone,^a Kung-Ching Liao,^a Sergey N. Semenov,^a Tomasz Żaba,^b Piotr Cyganik,^b Alan Aspuru-Guzik,^a and George M. Whitesides^{a,c}*

> ^aDepartment of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 United States

^bSmoluchowksi Institue of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow, Poland

^bKavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street, Massachusetts 02138 United States

*Corresponding author, email: <u>gwhitesides@gmwgroup.harvard.edu</u>

Experimental Details

Materials. Molecular precursors to all self-assembled monolayers (SAMs) were commercially available (\geq 98%, Sigma-Aldrich) unless otherwise specified. All organic solvents were analytical grade (99%, Sigma-Aldrich) and were used as supplied. All compounds were stored under a nitrogen atmosphere at < 4°C to avoid degradation. To ensure that the compounds were free of contaminants, all stored compounds were examined by ¹H NMR prior to use.

Formation of SAMs of Oligophenylthiols (Ph_nSH) and -methanethiols (Ph_nCH₂SH), with n = number of Phenylene rings (n = 1, 2, 3). We formed SAMs on template-stripped silver and gold substrate (Au^{TS} and Ag^{TS}).¹ Solutions of thiols (0.5-1mM) were made using anhydrous ethanol (200 proof); the solutions were purged with nitrogen before introduction of the metal substrate. HSPh is particularly sensitive to oxidation in solution; to minimize introduction of O₂ or H₂O from the surface of the metal substrate to the solution, we covered the substrate with anhydrous solvent before introduction to the thiol solution. The Au^{TS} and Ag^{TS} substrates were submerged in a 0.5-1mM ethanolic solution of thiolate for 16-24 hours at room temperature and under a nitrogen atmosphere. (The self-assembly of the aromatic thiols has to be performed in more dilute solutions than saturated *n*-alkanes due to poor solubility and possible multilayer formation). We rinsed the SAM-bound substrates with ethanol, and dried them under a gentle stream of nitrogen.

Formation of SAMs of Oligopolyphenylacetylenes (C=CPh_n). We formed SAMs of C=CPh_n on template-stripped gold (Au^{TS}). Au^{TS} substrates were submerged in a 1mM solution of alkyne in anhydrous hexadecane for 48 hours at room temperature and under a nitrogen atmosphere. Due to the susceptibility of alkynes to oxidation in the presence of oxygen;² exposure of the substrate and solution to oxygen was minimized.³ We rinsed the SAM-bound

2

substrates with hexadecane, followed by ethanol, and dried them under a gentle stream of nitrogen.

Electrical measurements using Ga₂O₃/EGaIn top-electrodes. We used EGaIn (eutectic Ga-In; 74.5% Ga, 25.5% In) conical tips that were selected to be free of visible asperities ("selected tips")⁴ on the surface of the Ga₂O₃. We measured charge-transport across the SAMs at ± 0.5 V by sweeping in both directions in steps of 0.05 V and starting at 0 V. Data for current density J (A/cm²) across SAMs of aromatic molecules exhibited a log-normal distribution; we fit Gaussian curves to histograms. We estimated the values of β (Å⁻¹) and J_0 (A/cm²) from linear regression analyses of the variation of values of $< \log |J| >$ (Gaussian mean value of data for $\log |J|$) with the length d (Å) of the tunneling barrier, measured as the distance in Å between the anchoring atom and the distal H-atom of the molecules (Figure 1).

Table S1. Summary of static water-wetting contact angles (θ_s) for oligophenyl-acetylenes and - thiols on Au^{TS}. Results agree well with measurements previously reported.⁵⁻⁷

Phenylacetylenes on	mean static contact	Phenylthiols	Mean static contact
Au ^{TS}	angle (θ_s) and	on Au ^{TS}	angle (θ_s) and
	standard deviation		standard deviation
$C \equiv CPh_1$	82 ± 1	SPh ₁	70 ± 2
$C \equiv CPh_2$	86 ± 2	SPh ₂	75 ± 2
$C \equiv CPh_3$	82 ± 2	SPh ₃	82 ± 2
		SCH ₂ Ph ₁	80 ± 2
		SCH ₂ Ph ₂	80 ± 2
		SCH ₂ Ph ₃	82 ± 2

Figure S1. Histograms of $\log |J|$ at +0.5 V for across SAMs of oligophenyl-acetylenes (C=CPh_n), -methanethiols (HSCH₂Ph_n), and -thiols (SPh_n) on Au^{TS} using selected conical tips that were free of visible surface asperities.³ Solid curves indicate a Gaussian fit, and N is the number of data points.

Figure S2. Histograms of $\log |J|$ at +0.5 V across SAMs of oligophenyl-thiols (SPh_n) and - methanethiols (HSCH₂Ph_n) on Ag^{TS} using "selected conical tips. Solid curves represent Gassian fits, and N is the number of data points.

SAM	Number of Junctions	Traces	<log j > V=+0.5 V</log j >	σ_{\log}	
Silver substrate					
SPh	25	525	2.2	0.4	
SPh_2	19	399	1.6	0.3	
SPh ₃	19	399	1.1	0.4	
				$\text{Log} J_0 $	2.9 ± 0.1
				β	0.30 ± 0.02
SCH ₂ Ph	20	420	1.9	0.5	
SCH ₂ Ph ₂	20	420	0.6	0.3	
SCH ₂ Ph ₃	25	525	-0.4	0.5	
				$\text{Log} J_0 $	3.7 ± 0.3
				β	0.66 ± 0.06
S(CH.) CH.					36 ± 03
S(CII ₂) _n CII ₃				LUG J R	0.72 ± 0.05
Gold substrate				<i>P</i>	0.72 ± 0.03
e e na sue su ane					
SPh	27	567	2.1	0.3	
SPh ₂	19	399	1.5	0.4	
SPh ₃	26	546	1.1	0.4	
				$\text{Log} J_0 $	2.7 ± 0.1
				β	0.28 ± 0.03
SCH_Ph	26	537	2.2	03	
SCH ₂ Ph ₂	20	430	0.9	0.5	
SCH ₂ Ph ₂	24	504	-0.1	0.1	
Sell ₂ l ils	21	501	0.1		4.0 ± 0.3
				B	0.66 ± 0.06
C≡CPh	20	420	2.2	0.4	
$C \equiv CPh_2$	20	420	1.6	0.5	
$C \equiv CPh_3$	26	546	1.1	0.5	
-				$\text{Log} J_0 $	3.0 ± 0.1
				β	0.30 ± 0.02
				T 171	10.00
$S(CH_2)_n CH_3$				$\operatorname{Log} J_0 $	4.2 ± 0.2
				ß	0.76 ± 0.03

Table S2. Summary of the electrical measurements of tunneling across SAMs of oligophenylthiols (–SH), -methanethiols (–CH₂SH), and -acetylenes (–C \equiv CH). V = +0.5 V.

Computational details. We performed density functional theory (DFT) calculations on cluster models of gold and silver-bound compounds of oligophenyls using the B3LYP hybrid exchange-correlation functional⁸ and the resolution-of-the-identity approximation for the Coulomb interaction.⁹ We employed split-valence plus polarization basis sets,¹⁰ along with the corresponding auxiliary basis sets,¹¹ and small-core relativistic effective core potentials for Ag and Au¹² throughout. We carried out unrestricted structure optimizations on individual polyaromatic molecules attached to the Ag₉ and Au₁₀ metal clusters. We analyzed subsequently the orbital energies and orbital shapes of the molecular orbitals (MOs) of the metal–molecule complexes at their respective optimized structures. All computations used the Turbomole quantum chemical program suite.¹³ Spin-up (alpha) and spin-down (beta) MOs are shown separately.

Cluster	MO, C≡C alpha	MO, C≡C beta
PhC≡CAu ₁₀		
	-5.723 eV (121a)	-5.724 eV (121a)
$Ph_2C \equiv CAu_{10}$	\$ -• () *?	
	-5.547 eV (141a)	-5.547 eV (141a)
$Ph_3C \equiv CAu_{10}$	∲⊷ ØØ∞	∲>•ØØ∞
	-5.474 eV (161a)	-5.474 eV (161a)

Table S3.	Orbital	energies	(eV) an	d shapes	of the	high-ly	ying MOs	s localized	on the	C≡C	bond for
the Au/C≡	≡CPh _n S€	eries.									

Cluster	MO, S alpha	MO, S beta
PhSAu ₁₀		
	-5.532 eV (123a)	-5.429 eV (123a)
Ph ₂ SAu ₁₀		
	-5.714 eV (143a)	-5.279 eV(143a)
Ph ₃ SAu ₁₀		
	-5.323 eV (163a)	–5.325 eV (163a)

Table S4. Orbital energies (eV) and shapes of the high-lying S lone pair MOs for the Au/SPh_n Series.

Table S5. Orbital energies (eV) and shapes of the S lone pair MOs using $Ph_nCH_2SAu_{10}$ closed-shell cluster models for the Ag/SCH₂Ph_n Series.

Table S6. Orbital energies (eV) and shapes of the S lone pair MOs using $Ph_nCH_2SAg_9$ closed-shell cluster models for the Ag/SCH₂Ph_n Series.

Cluster	E(MO, S)
PhCH ₂ SAg ₉	
	-4.981 eV (118a)
Ph ₂ CH ₂ SAg ₉	De Contra de Con
	-5.009 eV (138a)
Ph ₃ CH ₂ SAg ₉	A A A B A
	-5.020 eV (158a)

Molecule	E(HOMO), eV	E(gap), eV
PhSH	-5.914	5.594
Ph_2SH	-5.716	4.765
Ph ₃ SH	-5.631	4.357
Molecule	E(HOMO), eV	E(gap), eV
PhCH ₂ SH	-6.225	5.750
Ph ₂ CH ₂ SH	-6.061	5.010
Ph ₃ CH ₂ SH	-5.883	4.551
Molecule	E(HOMO), eV	E(gap), eV
PhC≡CH	-6.466	5.449
Ph ₂ C≡CH	-6.094	4.696
Ph₃C≡CH	-5.897	4.335

Table S7. HOMO energies and HOMO–LUMO gaps of aromatic molecules in vacuum. The computational approach is identical to that used for the molecule–metal complexes.

Synthesis of HSCH₂(C₆H₄)₂ ((1,1'-biphenyl)-4-ylmethanethiol). We followed a previously reported literature procedure.¹⁴ A 25 mL ethanolic solution containing 4-(bromomethyl)-1,1'- biphenyl (1) (4 mmol) and thiourea (608 mg, 8 mmol) was heated under reflux condition for 12 h (Scheme S1). After being cooled to room temperature, the reaction solvent was removed *in vacuo*, followed by addition of aqueous solution of KOH (246 mg, 4.4 mmol in 20 mL degassed water). The reaction mixture was again heated under reflux for 30 min under a N₂ atmosphere (Note: longer reaction time may cause oxidation of the thiol group). The reaction solution was cooled to room temperature, and extracted with cold (T = 0°C) CH₂Cl₂. The combined organic layer was dried over anhydrous MgSO₄, filtered to remove suspended solid, and concentrated *in vacuo* (Note: the temperature of water bath must be below 30 °C) to yield a white solid product. Mp = 77–78 °C; ¹H NMR (CDCl₃) δ 1.80 (t, *J* = 8.0 Hz, 1H), 3.79 (d, *J* = 8.0 Hz, 2H), 7.32-7.46 (m, 5H), 7.54-7.59 (m, 4H); ¹³C NMR (CDCl₃) δ 28.9, 127.3, 127.5, 127.7, 128.7, 129.0, 140.3, 140.4, 141.0.¹⁵

Scheme S1. Synthesis of [1,1'-biphenyl]-4-ylmethanethiol

Synthesis of HSCH₂(C₆H₄)₃ (4-methyl-1,1':4',1''-terphenyl). A degassed mixture of Na₂CO₃ (2.2 g, 21 mmol), tris(4-methylphenyl)boroxin (1.3 g, 3.7 mmol), Pd(PPh₃)4 (0.35 g, 0.30

mmol), 4-bromo-4'-methyl-1,1'-biphenyl (**3**) (2.47 g, 10 mmol), H₂O (8 mL), EtOH (8 mL), and toluene (30 mL) was stirred under N₂ at 80 °C for 16 h (Scheme S2). After cooling, the aqueous layer was removed and the organic phase was evaporated to dryness. Chromatography on silica (CH₂Cl₂) yielded a reddish solid, which was recrystallized from cyclohexane to give colorless solid. ¹H NMR (CDC1₃): 2.43 (s, 3 H, CH₃), 7.29 (d, J = 8 Hz, 2H, ArH), 7.36-7.40 (m, 1H, ArH), 7.48 (t, J = 8 Hz, 2H, ArH), 7.57 (d, J = 8 Hz, 2H, ArH), 7.66-7.69 (m, 6H, ArH). ¹³C (CDC1₃): 21.1, 126.9, 127.0, 127.3, 127.5, 128.8, 129.5, 137.1, 137.8, 139.8, 140.0, 140.7.

Synthesis of 4-(bromomethyl)-1,1':4',1''-terphenyl (6). 5 (0.5 g, 2 mmol), NBS (0.4 g, 2.2 mmol) and 20 mg of AIBN were heated to reflux in CCl₄ for 1 h. After 30 min, some more AIBN (20 mg) was added to the mixture. Removal of the solvent, followed by filtration through a pad of silica (using CH₂Cl₂ as a solvent) yielded a white solid (0.63 g, 95%) (Scheme S2). The product was used without any purification in the next step.¹H NMR: 4.57 (s, 2H, CH₂Br), 7.38 (d, J = 8 Hz, 1H, ArH), 7.44-7.50 (m, 4H, ArH), 7.61-7.69 (m, 8H, ArH).

Synthesis of [1,1':4',1''-terphenyl]-4-ylmethanethiol (7). Following the same procedure described for **2**, we synthesized **7** in 80% overall yield (Scheme S2). M.p. 205 – 207 °C. ¹H NMR (CDC1₃): 1.82 (t, *J* = 7.7 Hz, 1 H, SH), 3.81 (d, *J* = 7.6 Hz, 2 H, ArCH₂S), 7.35 - 7.49 (m, 5 H,), 7.57 - 7.67 (m, 8 H). ¹³C (CDC1₃): 28.7, 127.0, 127.3, 127.4, 127.5, 128.5, 128.8, 139.5, 139.6, 140.2, 140.3, 140.7.

Scheme S2. Synthesis of [1,1':4',1"-terphenyl]-4-ylmethanethiol (7)¹⁶

Synthesis of 4-Ethynyl-p-terphenyl. We followed the procedure described in reference 17.¹⁷ ¹H

NMR (CDCl₃) δ 3.14 (s, 1H), 7.37–7.58 (m, 3H), 7.59–7.69 (m, 10H).

REFERENCES

(1) Weiss, E. A.; Kaufman, G. K.; Kriebel, J. K.; Li, Z.; Schalek, R.; Whitesides, G. M. *Langmuir* **2007**, *23*, 9686-9694.

(2) McDonagh, A. M.; Zareie, H. M.; Ford, M. J.; Barton, C. S.; Ginic-Markovic, M.; Matisons, J. G. *J. Am. Chem. Soc.* **2007**, *129*, 3533-3538.

(3) Zaba, T.; Noworolska, A.; Bowers, C. M.; Breiten, B.; Whitesides, G. M.; Cyganik, P. J. *Am. Chem. Soc.* **2014**, *136*, 11918-11921.

- (4) Bowers, C. M.; Liao, K.-C.; Yoon, H. J.; Rappoport, D.; Baghbanzadeh, M.; Simeone, F. C.; Whitesides, G. M. *Nano Lett.* **2014**, *14*, 3521-3526.
- (5) de Boer, B.; Meng, H.; Perepichka, D. F.; Zheng, J.; Frank, M. M.; Chabal, Y. J.; Bao, Z. N. *Langmuir* **2003**, *19*, 4272-4284.

(6) Shaporenko, A.; Cyganik, P.; Buck, M.; Terfort, A.; Zharnikov, M. J. Phys. Chem. B **2005**, *109*, 13630-13638.

(7) Tao, Y. T.; Wu, C. C.; Eu, J. Y.; Lin, W. L.; Wu, K. C.; Chen, C. H. *Langmuir* **1997**, *13*, 4018-4023.

- (8) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- (9) Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 242, 652-660.
- (10) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- (11) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- (12) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* **1990**, 77, 123-141.

(13) Furche, F.; Ahlrichs, R.; Hattig, C.; Klopper, W.; Sierka, M.; Weigend, F. *Wires Comput. Mol. Sci.* **2014**, *4*, 91-100.

(14) Yoon, H. J.; Bowers, C. M.; Baghbanzadeh, M.; Whitesides, G. M. J. Am. Chem. Soc. **2014**, *136*, 16-19.

- (15) Kajjout, M.; Hebting, Y.; Albrecht, P.; Adam, P. Chem. Biodivers. 2012, 9, 714-726.
- (15) Himmel, H. J.; Terfort, A.; Woll, C. J. Am. Chem. Soc. 1998, 120, 12069-12074.
- (16) Shakirova, J. R.; Grachova, E. V.; Melekhova, A. A.; Krupenya, D. V.; Gurzhiy, V. V.;

Karttunen, A. J.; Koshevoy, I. O.; Melnikov, A. S.; Tunik, S. P. Eur. J. Inorg. Chem. 2012, 4048-4056.