

0

Supporting Information

for

A Soft Tube-climbing Robot

Mohit S. Verma1+, Alar Ainla,1+ Dian Yang1,2+, Daniel Harburg1, Zhigang Suo2,4, and George M.

Whitesides1,3,4*

1 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street,

Cambridge, MA 02138, USA.

2 School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street,

Cambridge, MA 02138, USA.

3 Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street,

Cambridge, MA 02138, USA.

4 Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street,

Cambridge, MA 02138, USA.

+ Authors contributed equally.

(*) Author to whom correspondence should be addressed: gwhitesides@gmwgroup.harvard.edu

1

Supplementary Figures

Figure S1. Structure of the tube climber. Computer-aided design (CAD) drawing showing 3D

view and two cross-sectional views.

2

Figure S2. Design of the control electronics. All electronics were controlled and powered from a

laptop computer through Arduino microcontroller board. The tube-climbing robot was composed

of three pneumatic actuators: two expansion rings in both ends and one linear actuator. All were

controlled by three identical pneumatic control channels. Pressure and gas flow in each channel

was controlled by six solenoid valves (two per channel). Each valve is controlled through an

NPN transistor using microcontroller digital output pins. Power was drawn from the power

output pin (+5 V) of the microcontroller board. All components used in the controller are listed

in Table S1. Microcontroller was programmed in Arduino software 1.5.6. Firmware is supplied in

the supplementary text. Timing characteristics of the sequence were set through USB-virtual

serial port interface. Execution of the sequence was timed using timer interruptions with a

resolution of 1ms.

3

Figure S3. Optimization of the time periods used for operating the tube-climbing robot. Tube

climber moves vertically without additional load (mass = 98 g). A) We varied the deflation time

of the expansion ring ted, while tei=0.4 s, tli=1 s and tld=2 s. Optimal time for ted was 100 ms for

achieving maximum climbing speed. B) We varied inflation time of linear actuator tli, while

tei=0.4 s, ted=1 ms and tld=2 s. Optimal was 1 s. Optimized parameter set tei=0.4 s, ted=0.1 s, tli=1

s and tld=2 s, yielded highest vertical speed of tube climber without any load. (See Figure 2 in the

main text for images of the tube climber in operation at maximum speed.)

4

Figure S4. The operation of tube-climbing robot under additional load (m = 1381 g). Sequence

parameters are: tei=0.5 s, ted=1 s, tli=1 s and tld=2 s. We can see the sliding of both front and back

expansion rings as the climber attempts to move up. We can also observe that the linear actuator

does not achieve full actuation due to the heavy load. The large load also causes kick back of the

back expansion ring when contracted (see the frame at 1s). The climber still manages to climb up

slowly (~ 0.76 mm/s).

5

Figure S5. Comparison of climbing in dry and wet conditions (tube and climber were freshly

soaked in water). Parameters: tei = 0.4 s, ted = 0.1 s, tli = 1 s and tld = 2 s. Water does not have an

observable effect on the climbing performance.

6

Figure S6. Climbing in oily tube. The tube and climber were covered with vegetable oil. The

expansion rings lose grip and tend to slide. In an oily tube, speed of bare tube climber (mass = 98

g) drops 3.3 times (from 6 mm/s to 1.8 mm/s) compared to a dry tube. Also load carrying

capability drops substantially and is below <200 g, while dry tube can carry >1200 g at the same

settings.

7

Supplementary Table

Table S1. List of components used in the pneumatic controller

Symbol Quantity Name Description

IC 1 Arduino UNO Powered, controlled and programmed over

USB

V 6 Lee LHDA0533115H Solenoid microvalve, 5Vdc, -45 … 30 psid.

T 6 2N4124 NPN transistor, 30V, 200mA

R 6 1 kΩ Resistor

8

Firmware for the controller

// ---

// Tube-climber controller

// Alar Ainla, 2017 GMW Group Harvard

// ---

//Timer configuration

long microseconds=1000; //Timer period in microseconds. We use 1ms resolution

#define RESOLUTION 65536 // Timer1 is 16 bit

//IO pins definition

//If pressure valve is in state HIGH actuator is connected to pressure source, if LOW is isolated

//If vacuum valve is in state LOW actuator is connected to the vacuum source, if HIGH is isolated

#define FrontP 4

#define FrontV 3

#define MiddleP 6

#define MiddleV 5

#define BackP 2

#define BackV 7

//Timing the robot

int counter=0; //Counts time steps in ms

int tA=1000; //Inflation time of the expansion ring (both ends) in ms

int tB=500; //Deflation time of the expansion ring (both ends) in ms

int tC=1000; //Linear actuator (middle part) inflation time in ms

int tD=2000; //Linear actuator deflation time in ms

int state=0; //Actuation step: 0-all off (not running).

 //1 -inflate front, 2-deflate back, 3-deflate-middle,

 //4-inflate back, 5-deflate front, 6-inflate middle.

//Set output step based on the state of the system

void setState()

{

 //First switch all off (disconnected state)

 digitalWrite(BackV, HIGH);

 digitalWrite(BackP, LOW);

 digitalWrite(FrontV, HIGH);

 digitalWrite(FrontP, LOW);

 digitalWrite(MiddleV, HIGH);

 digitalWrite(MiddleP, LOW);

 if(state==0) //All under vacuum

 {

 digitalWrite(BackV, LOW); digitalWrite(FrontV, LOW); digitalWrite(MiddleV, LOW);

 }else

 if(state==1) //Inflate front

 {

 digitalWrite(FrontP, HIGH);

 }else

 if(state==2) //deflate back

 {

 digitalWrite(BackV, LOW);

 }else

 if(state==3) //deflate middle and back

 {

 digitalWrite(MiddleV, LOW);

 digitalWrite(BackV, LOW);

 }else

 if(state==4) //inflate back

 {

 digitalWrite(BackP, HIGH);

 }else

 if(state==5) //deflate front

 {

 digitalWrite(FrontV, LOW);

 }else

 if(state==6) //inflate middle and deflate front

 {

 digitalWrite(MiddleP, HIGH);

 digitalWrite(FrontV, LOW);

 }else;

}

//Timer interupt service - configured for 1ms

ISR(TIMER1_OVF_vect)

{

 if((state==1)&&(counter>tA)){ state=2; counter=0; setState(); }else

 if((state==2)&&(counter>tB)){ state=3; counter=0; setState(); }else

9

 if((state==3)&&(counter>tD)){ state=4; counter=0; setState(); }else

 if((state==4)&&(counter>tA)){ state=5; counter=0; setState(); }else

 if((state==5)&&(counter>tB)){ state=6; counter=0; setState(); }else

 if((state==6)&&(counter>tC)){ state=1; counter=0; setState(); }else;

 counter++;

}

//Initilize the timer interup service based on Timer1

void initTimer()

{

 long cycles = (F_CPU / 2000000) * microseconds; // the counter runs backwards after TOP,

 //interrupt is at BOTTOM so divide microseconds by 2

 char oldSREG;

 unsigned char clockSelectBits;

 TCCR1A = 0; // clear control register A

 TCCR1B = _BV(WGM13); // set mode 8: phase and frequency correct pwm, stop the timer

 if(cycles < RESOLUTION) clockSelectBits = _BV(CS10); // no prescale, full xtal

 else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS11); // prescale by /8

 else if((cycles >>= 3) < RESOLUTION) clockSelectBits = _BV(CS11) | _BV(CS10); // prescale by /64

 else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS12); // prescale by /256

 else if((cycles >>= 2) < RESOLUTION) clockSelectBits = _BV(CS12) | _BV(CS10); // prescale by /1024

 else cycles = RESOLUTION - 1, clockSelectBits = _BV(CS12) | _BV(CS10);

 // request was out of bounds, set as maximum

 oldSREG = SREG;

 cli(); // Disable interrupts for 16 bit register access

 ICR1 = cycles; //pwmPeriod = cycles; // ICR1 is TOP in p & f correct pwm mode

 SREG = oldSREG;

 TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));

 TCCR1B |= clockSelectBits; // reset clock select register, and starts the clock

 TIMSK1 = _BV(TOIE1);

}

//Setup the micontroller

void setup()

{

 initTimer(); //Configure timer interupt for 1ms resolution

 //Configure all IO pins to OUTPUT and low

 for(int i=0; i<10; i++)

 {

 pinMode(i, OUTPUT);

 digitalWrite(i, LOW);

 }

 //Configure serial port

 Serial.begin(115200); //Init comport for data communication

 delay(10);

 //Ready for operation send instruction information

 Serial.println("Tube climber controller, FW: 1.0, Alar Ainla, GMW Group");

 Serial.println("Commands (all time parameters are in milliseconds):");

 Serial.println("R - run");

 Serial.println("X - halt");

 Serial.println("A= - set end inflation (default: 1000)");

 Serial.println("B= - set end deflation (default: 500)");

 Serial.println("C= - set middle part inflation (default: 1000)");

 Serial.println("D= - set middle part deflation (default: 2000)");

 Serial.println("--");

}

//This is main loop to service

String datain; //Incoming data

char command; //1 char long string command

int datain_param; //Numeric parameter of data in

void loop()

{

 if(Serial.available()>0)

 {

 datain=Serial.readString();

 if(datain.length()>0) //If length is larger than zero

 {

 command=datain.charAt(0); //Get command

 if(datain.length()>2) //Get numeric parameter

 { datain_param=datain.substring(2).toInt(); }

 //Process

 if(command=='A')

 {

 tA=datain_param;

 Serial.print("A=");

 Serial.println(tA);

 }else

 if(command=='B')

10

 {

 tB=datain_param;

 Serial.print("B=");

 Serial.println(tB);

 }else

 if(command=='C')

 {

 tC=datain_param;

 Serial.print("C=");

 Serial.println(tC);

 }else

 if(command=='D')

 {

 tD=datain_param;

 Serial.print("D=");

 Serial.println(tD);

 }else

 if(command=='X')

 {

 state=0;

 setState();

 Serial.println("HALT");

 }else

 if(command=='R')

 {

 state=1;

 counter=0;

 setState();

 Serial.println("RUN");

 }

 }

 }

}

// -- END --

11

Captions for supplementary videos

Video S1. Demonstration of the operation of tube-climbing robot in a vertical tube, in real time.

Video S2. Demonstration of the operation of tube-climbing robot in a tube at different angles,

video is sped up 4x.

Video S3. The tube-climbing robot clears a piece of tissue paper from the tube, video is sped up

4x.

Video S4. The tube-climbing robot turns around a corner in a joint connecting two tubes, video

is sped up 4x.

Video S5. The operation of the tube-climbing robot with weights, in real time.

Video S6. The vertical operation of tube-climbing robot through a water column, in real time.

Video S7. The operation of the tube-climbing robot in a horizontal tube submerged under water

in real time.

Video S8. The operation of the tube-climbing robot in a vertical tube when the surface is covered

in vegetable oil, in real time.

