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Materials 

 Blood samples were purchased from Blood Research Components, LLC.  

Selecting the number and dimensions of magnets 

Simulation in COMSOL shows that a minimum number of 15 magnets and a 

minimum length of ~101.6 mm (four inches) of the magnets are required to create a 

nearly uniform magnetic field in all 12 gaps to accommodate all 12 columns of tubes on a 

96-well plate. We used an array of 15 magnets of 101.6 mm × 4.8 mm × 6.4 mm 

(L×W×H)—half of the final magnet array we used in this study—as an example to 

illustrate the design.  

First, we found that the profile of the magnetic field in the outermost gaps 

deviates slightly from those in the middle, which are virtually indistinguishable. For 

example, the strength of the field along y-axis (along the longest dimension of the 

magnets) at both z=H1/2 and z=H1 (Figure S1A, plane b, green lines. H1 is the height of 

the magnet, and z=0 is defined at its bottom face) in the middle of the outermost gaps 7 

and 7’ deviates from those in other gaps (Figures S1C and S1E). Similarly, the z-

component of the magnetic field along the vertical centerlines of the gaps (Figure S1A, 

white lines on plane a) in the outermost gaps deviates from those in other gaps (Figures 

S1B and S1D). While the outermost gaps are similarly functional to levitate objects, we 

simply excluded them in this study for simplicity (e.g., to avoid having to carry out 

separate calibrations for density measurements). 

Second, we found that a minimum length of 101.6 mm (four inches) of a magnet 

is required to create a uniform profile of the magnetic field in the gaps along the length of 

the magnet (represented by the flat profiles of the field along the y-axis in the middle  
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Figure S1 Selection of the number and dimensions of the magnets to create an identical 

profile of magnetic field for all the tubes on a 96-well plate. (A) A schematic of the 

spatial arrangement of the magnets. In this schematic, we showed only half of the array 

(only the top magnets) that we constructed experimentally. Plane a on the x-z plane cuts 

through the magnet array at half its length (L/2 along y-axis). Plane b on the y-z plane sits 

in the middle of the 1’ gap. The red lines represent the vertical symmetric axes of the 

gaps. The green lines run along the y-axis in the middle of the gaps, and (as shown) are 

on the same plane as the top faces of the magnets. (B) The profile of magnetic field 

strength (represented by the absolute magnitude of the field, ||B||) on plane a. (C) The 

profile of magnetic field strength (||B||) on plane b. The dashed box indicates the magnets 

in the y-z plane. (D) Bz along the white lines in (A). (E) ||B|| along the green lines in (A) 

at two heights of z=H1 (as shown in (A)) and z=H1/2. The grayed region represents the 

length (L=4” or ~101.6 mm) of the magnets.  
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segments, Figure S1E). The magnetic field is not uniform—as expected—towards the 

edge of the magnets. The uniform profile of the field is important to ensure that all eight 

tubes in a single column on the plate (which spans ~63 mm) experience indistinguishable 

magnetic fields.  

Third, we optimized the specific dimensions of the magnets—the width (W) and 

height (H1). Eq 2 in the main text suggests that for a given concentration of paramagnetic 

medium (and thus a fixed value of the magnetic susceptibility of the suspending 

medium), the measurable range of density is determined by the characteristics of the 

magnetic field as indicated by the 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧)term; we, therefore, evaluated its 

dependence on the dimensions of the magnets.  

In the simulation, we placed the origin of the z-axis at the bottom of the tube to 

maximize the use of the space between the magnets for density measurements. We then 

set the bottom faces of the magnets at z=0 and swept the height of the magnets H1—and 

the width of the magnets changes accordingly as the magnets adapt to the tubes on the 

plate. We quantitatively evaluated the influence of height of the magnets on the z-

component of the field 𝐵𝑧 and the term 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧).  

Figure S2B and S2C show that as the height of the magnets increases from 2 mm 

to 12 mm, the z-component of the magnetic field 𝐵𝑧 increases to reach a maximum at 

H1~6 mm while 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) reaches its maximum earlier at H1~4mm. As H1 increases 

beyond ~8mm, neither 𝐵𝑧 nor 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) is linear. Given the commercial availability of 

magnets (Long and thin NdFeB magnets are brittle and susceptible to mechanical 

breakage, and are only available in limited selection of sizes and shapes even for 

customized magnets), and the physical dimensions of the 96-well plate, we used 15  



S6 
 

 
  



S7 
 

Figure S2 Simulation-guided selection of the dimensions of the magnets (A) A schematic 

of the spatial arrangement of the magnets and the tubes on a 96-well plate that we used 

for the simulation. In the simulation, we set the origin of the z-axis at the bottom of the 

tube, and then fix the bottom face of the (top) magnet at z=0, while allowing the height 

and width of the magnet to change according to the contour of the external surface of the 

tube. (B) and (C). Bz and the derived term 𝐵𝑧 × (𝑑𝐵𝑧 𝑑𝑧)⁄  along the central line (the red 

line on the left in A) as the height of the magnets (H1) varies. (D) and (E) Bz and the 

derived term 𝐵𝑧 × (𝑑𝐵𝑧 𝑑𝑧)⁄  along the central line (the red line on the right in A) as the 

height of the bottom magnets (H2) varies while maintaining H1=6.4 mm. 
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magnets of H1=6.4 mm to generate uniform magnetic fields for all of the tubes on a plate, 

while maximizing both the working distance and the gradient of the magnetic fields. 

Lastly, we stacked a second a second set of magnets at the bottom of the first set 

to increase the strength of the magnetic field further, and thus, to reduce the concentration 

of the paramagnetic species in the medium required to levitate samples. We exploited the 

strong magnetic field around the boundary where two opposite poles of the magnets meet 

as shown in Figure 2C in the main text. In the simulation, we used the same width and 

length for the second set of magnets, and swept its height H2. The Bz at z=0 in the gap 

(Figure S2D) clearly increases when the height of the second set of magnets H2 increases 

from zero to H2 = H1, and then quickly plateaus beyond H2 > H1. We, therefore, simply 

selected H2 = H1 for the final configuration we describe in this study. We estimated that 

this simple approach of stacking magnets increased 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) by ~ 4× (at z=1.5 mm, 

Figure S2E)—that is equivalently we may use ~4× diluted paramagnetic medium to 

levitate samples of the same density (eq 2 in the main text).  

 

Design an apparatus to image samples that levitate in a 96-well plate using a scanner 

We used a flatbed scanner to acquire images of the levitated samples in a 96-well 

plate, and designed an apparatus (including a flatbed scanner and a simple interface) 

using mirrors and relay lenses to project focused images of the levitated samples to the 

scanner bed. Figure S3 shows the design of the apparatus we implemented in this study, 

and Table S1 lists the dimensions for the spatial arrangement of the key components. 

Logistically, we first used simple models (based on ray diagrams) to guide the selection 

of specific sets of parameters for the key components (e.g. angles of mirrors,  
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Figure S3. Spatial arrangement of magnets, mirrors and lenses used to levitate and image samples (three colored beads, as an example) 

in paramagnetic media in a 96-well plate  
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Table S1 Spatial arrangement of mirrors and lenses  

Tube No. 1 2 3 4 5 6 7 8 

Lateral shift of the 

mirror (𝐷, mm) 
-24.0 -15.0 -6.0 3.0 12.0 21.0 30.0 39.0 

Angle of the mirror  40.2o 42.0o 43.8o 45.6o 47.4o 49.2o 51.0o 52.8o 

Lateral shift of the 

lens (𝑥𝑝, mm) 
-23.4 -15.0 -6.5 1.8 10.2 18.5 27.2 35.6 

*note: See Figure S3 for assignment of Tube No. All values are reported with 

respect to the central axis of the scanner, and the direction of the lateral shift of 

the illumination is designated as “positive”. 
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and lateral shifts of relay lens with respect to the tubes), and then optimized these 

dimensions empirically to arrive at the final values. We describe the specific 

configurations for the three key parts (the scanner, the mirrors, and the lens) of the 

apparatus in detail.  

(1) The scanner 

We used the scanner (Epson®, Perfection, V600), and its associated software 

(specifically, the “film” mode) to control and acquire the images. The scanner has a 

flatbed with a width 223 mm, and, in its closable lid, a LED that provides a uniform, line 

illumination (83 mm). The lid is physically attached to the body of the scanner (through a 

cable), but can be raised from the body of the scanner for a maximum distance of ~65 

mm—a distance large enough to accommodate the MagLev device. The LED traverses, 

during scanning, along the central axis of the scanner, and illuminates a strip that 

overlaps the central axis of the scanner with a lateral shift of ~7.5 mm in the orthogonal 

direction to the central axis. The scanner and the software records the central region of 

the strip with a width of ~60 mm. 

When the scanner is used to image 3D-objects (e.g. the MagLev device), it 

provides an oblique view, that is objects placed further away from the central axis of the 

scanner appear to be tilted toward the axis (Figure S4B). This observation probably 

originates from the optics of the scanner, and is not a surprise given the fact that the 

scanner is usually optimized to image thin, 2D sheets. We used a simple convex lens to 

model the optics internal to the scanner (which we presume is based on a similar design), 

and estimated the critical parameter (~240 mm, based on the simple model as we 

described in Figure S4), the distance of physical separation between the flatbed and the  
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Figure S4. Estimation of the physical separation of the lens and flatbed of the scanner (A) 

a schematic of a simple optical system to model the optics internal to the scanner. An 

object with a height of h is placed on the flatbed at a distance of D to the central axis of 

the scanner, and has a perceived length of x in the image acquired by the scanner. We 

used similar triangle to calculate the physical separation, h, of the flatbed and the lens. 

(B) Four binder clips (h=32 mm), along with a ruler, were placed on the scanner at 

various distances (marks on the ruler: 2.0 cm, 5.0 cm, 8.0 cm and 11.2 cm) to the central 

axis (dashed white line).  
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lens of the scanner. We used this parameter to design and guide the spatial placement of 

mirrors and lenses. 

 

(2) The mirrors 

All mirrors were inserted in the gaps of the magnet array of at ~45o facing 

downward to project images of the individual tubes. In each of the 12 gaps, we inserted a 

total of eight mirrors at an inter-mirror separation of 9 mm, positioned the centers of the 

mirrors at the half height of the top magnets, and finally aligned the row of mirrors 

symmetrically about the axis of illumination. Because of the axis of illumination is 

laterally shifted by +7.5 mm (we defined the shifts in the direction of the illumination 

axis as positive values), the coordinates for the centers of the mirrors are thus the 

following: 39, 30, 21, 12, 3, -6, -15, -24 (mm).  

We finely tuned the angles of the mirrors for tubes situated at different distances 

to the central axis of the scanner to provide a non-oblique view of the sample that levitate 

in these tubes. Because of the shape of the magnetic field, the samples, e.g., small 

particles, form horizontal lines within the tubes. We adjusted the spatial arrangements of 

the mirrors and lenses such that the lines appeared as single dots on the acquired images.  

We developed a simple model (Figure S5) to estimate the angle at which the axis 

of the tube in the reflected image is perpendicular to the line defined by the centers of the 

mirror and the lens of the scanner, and used this angle to provide an non-oblique view of 

the samples in the tube.  

 
(3) The lens 
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Figure S5. Determination of the optimal angles of the mirrors to provide a “head-on” 

view of levitating objects. The center of the mirror is positioned at 4𝑓 above the flatbed 

of the scanner. 𝑓 is the focal length of the relay lens, and H is the distance between the 

flatbed and the lens of the scanner. A relay lens (not shown), when placed at a distance of 

2𝑓 below the tube, will project an image of the tube to the flatbed of the scanner at a 

distance of 2𝑓 with a 1:1 magnification. D is the distance of the mirror to the central axis. 
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We placed relay lenses below the mirrors to project images of the tubes to the 

flatbed of the scanner. We shifted the lenses toward the central axis of the scanner such 

that the central portion of the tubes became visible to the scanner. We used the following 

model (Figure S6) to estimate the lateral shifts of the lenses with respect to the central 

axis, and used these estimates (for a total of eight lenses for a single column of tubes on 

the plate) as the initial set of values to optimize the lateral shifts of the lenses. 

 

Assembly of the device  

We used 3D-printed plastic parts to house the magnets and assemble the 

supporting components (e.g. mirrors and lenses). Figure S7 depicts the major components 

in the fully assembled device. 

 

Analysis of Images 

We processed images of each well with custom software to determine the 

positions of the levitated samples relative to the center of the viewing circle.  We 

calibrated each well based on the measured locations of density standards (~200 m 

colored particles). We then measured the densities of samples not used during calibration 

and compared our experimentally-measured densities with literature values.  The 

software identified and segmented samples based on either a distinguishing color or a 

change in contrast at the boundary of the samples.  

We identified the center of each viewing circle by converting an image of the well 

to binary with a threshold value of 0.047 using the im2bw() function in Matlab and 

computing the centroid of the largest connected region. 
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Figure S6. Estimation of the lateral shifts of the lenses, 𝑥𝑝, with respect to the central axis 

of the scanner.  𝑓 is the focal length of the relay lens. 
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Figure S7. Exploded and collapsed views of the final assembled device. 
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We identified samples with colors clearly distinguishable from the background 

primarily based on their hue value.  This was the case for all four of the density standards 

that we used for calibration (Figure S8). Occasionally, the background may also show a 

faint color similar to the particles (it was caused by both the fluorescence that these dyed 

particles emitted under the conditions we carried out the experiment, and the natural color 

of the plastic housing we used.); the color, however, did not interfere with the 

determination of the positions of these particles. Cut-off hue values and other 

specifications are detailed in Table S2.  

 Several of the samples that we measured experimentally lacked a distinguishing 

color; we were not able to identify the locations of these samples using the procedures as 

described above. Instead, we used edge detection to determine the location of these 

samples (Figure S9).   

We analyzed the spread in density of samples of red blood cells by fitting a 

normal distribution to the density distribution of the cells (Figure S10).  The density 

distribution was measured experimentally by comparing with an in-situ calibration 

performed by fitting the measured locations of density standards (the green and blue 

particles). 

We described the preceding image processing and analysis operations on a per-

well basis.  To evaluate the entire 96-well plate, we ran these operations in a loop over an 

image of the entire plate, where the image of the entire plate was spliced into 96 sections 

(8×12), each of which was analyzed serially.   
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Figure S8. Image processing of colored particles in a well to determine their locations 

relative to the well centroid. 

  

-200

-150

-100

-50

0

50

100

150

200

0 20 40 60
D

is
ta

n
c

e
 f

ro
m

 W
e

ll
 C

e
n

tr
o

id
 (

p
x
)

Count (px)

Green

Purple

Red

Blue



S20 
 

Table S2. Identifiers and constraints used to segment colored particles from images. 

Color Identifier 1 Constraint on 1 Identifier 2 Constraint on 2 

Green Hue 0.17 < H < 0.45 Value H > 0.97 

Purple Hue 0.80 < H < 0.98 Value H > 0.60 

Red Hue 0.01 < H < 0.07 Value H > 0.75 

Blue Hue 0.45 < H < 0.65 Red Channel R < 0.35 
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Figure S9. Processing of an image of cholesterol suspended in a well using an edge 

detection algorithm.  Starting from the original image (a), the value channel of the hue-

saturation-value representation is extracted (b) and blurred with a Gaussian filter (c).  

Edges are detected with the Canny edge detection algorithm (d), and regions outside of 

the well are cropped (e).  Finally, artefactual edges under a threshold length are removed 

(f), the remaining edges are dilated (g), and the region of interest within the edges is filled 

as a convex hull of the edge pixels. 

  

a) b) c) d)

e) f) g) h)
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Figure S10. The spread in density for a sample of red blood cells was determined by first 

calibrating the density in-situ using the density standards (a, the green and blue particles), 

and then fitting a normal distribution to the density distribution of the cells (b). For this 

sample, the estimated mean density of the red blood cells was 1.11 g/cm3, and the spread, 

represented by the standard deviation, was ~0.01 g/cm3. 
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Estimation of the uncertainty of measurements for samples in single tubes using 

calibration curves  

We used a set of four colored particles to calibrate the density measurements in 

individual wells, and here, estimated the uncertainty in the estimated values of densities 

of samples using the calibration curves if we treat single tubes as independent 

measurements. 

Eq S1 gives the equation for the best-fit for the plot of density vs. the distance D 

of the colored particles to the center of the viewing area. We used four pairs of data 

(𝐷𝑖 , 𝜌𝑖) (i=1-4) to establish the calibration curve for each tube. For this discussion, D 

(unitless) simply represents the number of pixels on the image, and is negative when the 

centroid of the particles are below the center of the viewing area on the image. (We did 

not convert the number of pixels to physical distances for this example.) 𝜌 (kg/m3) is the 

average density of the particles. 

𝐷 = 𝑚𝜌 + 𝑏                                                                                                           (𝑆1) 

For a sample with unknown density (e.g., a cluster of particles), we first 

determine its D, and then insert it to eq S1 to calculate its density. 

Eq S2 gives the uncertainty, 𝛿𝜌, in the estimate of density using the calibration 

curve, Eq S1.1 In eq S2, 𝑆𝐷 is the standard deviation of the vertical distances on the 

calibration curve between the D-coordinates of the colored particles and the best-fit 

curve, |𝑚| is the absolute value of the slope, 𝑘 is the number of replicate measurements 

of the unknown sample, 𝑛 is the number of data points to establish the calibration curve, 

�̅� is the average of the D for the colored particles, �̅� is the average of the densities for the 
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colored particles, and D is the distance between the centroid of the sample to the center of 

the viewing circle. 

𝛿𝜌 =
𝑆𝐷

|𝑚|
√

1

𝑘
+

1

𝑛
+

(𝐷−�̅�)2

𝑚2 ∑(𝜌𝑖−�̅�)2                                                                                  (𝑆2)       

We applied eqs S1 and S2 to estimate the density, and its associated uncertainty, 

of a sample of 3-chlorotoluene (a single measurement, 𝑘 = 1) in the tube shown in 

Figure 6A, and obtained 1.068 ± 0.006 g/cm3.  

 

Experimental determination of the magnetic susceptibility of a paramagnetic 

medium 

We determined experimentally the magnetic susceptibility of an aqueous solution 

of nominal 3 M DyCl3. We first diluted the concentrated solution by 6× to yield an 

aqueous solution of nominal 0.5 M DyCl3, and then levitated a set of glass beads (1.0200, 

1.0630, 1.1100, and 1.1550 g/cm3) with precisely known densities (±0.0002 g/cm3) using 

the standard MagLev device. We used a ruler with a minimal division of 1 mm (read to 

±0.1 mm) to measure the levitation heights of the beads. 

We plotted the density vs. h, and performed linear fit, which yielded eq S3: 

ρ = −6663(±187)ℎ + 1267(±5)                                      (𝑆3) 

In eq S3, ρ (𝑘𝑔/𝑚3) is the density of a sample that levitated at a distance of 

ℎ (𝑚) to the surface of the bottom magnet. The slope is presented as best-fit value 

±standard deviation of the best-fit value. 

Eqs S4-6 give the formulas for ρ vs. h using the standard MagLev device.2 

ρ = 𝛼ℎ + 𝛽                                                                                  (S4) 
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𝛼 =
(𝜒𝑠 − 𝜒𝑚)4𝐵0

2

𝑔𝜇0𝑑2
                                                                     (S5) 

𝛽 = 𝜌𝑚 −
(𝜒𝑠 − 𝜒𝑚)2𝐵0

2

𝑔𝜇0𝑑2
                                                          (S6) 

 In eqs S5 and S6, 𝜒𝑠 (unitless) is the magnetic susceptibility of the sample, 𝜒𝑚 

(unitless) is the magnetic susceptibility of the paramagnetic medium, 𝐵0 (𝑇)  is the 

maximum strength of the linear magnetic field along central axis in the gap between the 

two facing magnets, 𝑔 (9.8 m/s2) is the constant of gravitational acceleration, 𝜇𝑜 (4π x 10-

7 N•A-2) is the magnetic permeability of the free space, 𝑑 (𝑚) is the distance of 

separation of the two magnets, 𝜌𝑚 (𝑘𝑔/𝑚3)  is the density of the paramagnetic medium. 

 We used eqs S3 and S5 to calculate the magnetic susceptibility of the solution, 

𝜒𝑚, and the part that contributed by the DyCl3, 𝜒𝐷𝑦𝐶𝑙3

′ . Eqs S7 and S8 give the rearranged 

equations for the calculation. 

𝜒𝑚 = 𝜒𝑠 −
𝛼𝑔𝜇0𝑑2

4𝐵0
2                                                 (𝑆7) 

𝜒𝐷𝑦𝐶𝑙3

′ = 𝜒𝑚 − 𝜒𝐻2𝑂                                                (𝑆8)       

 To calculate the 𝜒𝐷𝑦𝐶𝑙3

′ , we used the experimentally measured values for 𝐵0 

(0.385 T), and d (45.0 mm). We estimated the magnetic susceptibility of the glass bead, 

𝜒𝑠, using a simple model in which the glass beads (we used 𝜌𝑏𝑒𝑎𝑑 = 1.1100 g/cm3 for 

this calculation) consist of glass (𝜌𝑔𝑙𝑎𝑠𝑠 ≈ 2.4 𝑔/𝑐𝑚3, 𝜒𝑔𝑙𝑎𝑠𝑠 =  −1.39 × 10−5), and an 

air pocket (we assumed zero density or magnetic susceptibility).3 

𝜒𝑏𝑒𝑎𝑑 = 𝜒𝑔𝑙𝑎𝑠𝑠 (
𝑉𝑔𝑙𝑎𝑠𝑠

𝑉𝑏𝑒𝑎𝑑
) = 𝜒𝑔𝑙𝑎𝑠𝑠 (

𝜌𝑔𝑙𝑎𝑠𝑠

𝜌𝑏𝑒𝑎𝑑
)=−3.0 × 10−5          (𝑆9) 

 In eq S8, 𝜒𝐻2𝑂 is the magnetic susceptibility of water (−9.0 × 10−6). 
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 We assumed that the major uncertainty in estimating the 𝜒𝐷𝑦𝐶𝑙3
 stemmed from the 

uncertainty of the linear fit, and estimated the magnetic susceptibility of the diluted 

DyCl3 solution, 𝜒𝐷𝑦𝐶𝑙3

′ : 

𝜒𝐷𝑦𝐶𝑙3

′ = (2.60 ± 0.08) × 10−4                                                  (𝑆10)                                 

 We, therefore, determined the magnetic susceptibility of the original solution of 

nominal 3 M DyCl3: 

𝜒𝐷𝑦𝐶𝑙3
 = (2.60 ± 0.08) × 10−4 × 6 − 9.0 × 10−6= (1.56 ± 0.05)  × 10−3 (𝑆11)  

 

Calculation of the density of a cluster of particles  

We first estimated the magnitude of the 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) at distance D (with respect to 

the center of the viewing circle, Figure 6A) using the calibration curves established by 

the small, colored particles. 

Eq S12 gives the equation of the linear fit for the colored particles in a tube.  

𝐷 = 𝑚𝜌 + 𝑏                                                 (𝑆12) 

Eq S13 is the same equation, eq 2, that we described in the main text. This 

equation allows us to estimate the value of 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) at the position a sample levitates 

(e.g., density particles having a known density and a magnetic susceptibility) in a 

paramagnetic medium with a known density and a magnetic susceptibility.  

𝜌 =
(𝜒𝑠 − 𝜒𝑚)

𝜇𝑜𝑔
(𝐵𝑧

𝑑𝐵𝑧

𝑑𝑧
) + 𝜌𝑚                      (𝑆13) 

We combined eqs S12 and S13 to give eqs S14-17 that we can use to estimate the 

value of 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) at any distance D in the linear range we characterized using the 

colored particles. 
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𝐵𝑧

𝜕𝐵𝑧

𝜕𝑧
=

𝜇𝑜𝑔

𝑚(𝜒𝑠 − 𝜒𝑚)
𝐷 −

𝜇𝑜𝑔(𝑏 𝑚⁄ + 𝜌𝑚)

(𝜒𝑠 − 𝜒𝑚)
        (𝑆14) 

𝐾1 =
𝜇𝑜𝑔

𝑚(𝜒𝑠 − 𝜒𝑚)
                                                         (𝑆15) 

𝐾2 =
𝜇𝑜𝑔(𝑏 𝑚⁄ + 𝜌𝑚)

(𝜒𝑠 − 𝜒𝑚)
                                                  (𝑆16) 

𝐵𝑧

𝜕𝐵𝑧

𝜕𝑧
= 𝐾1𝐷 − 𝐾2                                                       (𝑆17) 

We calculated the values of 𝐾1 and 𝐾2 for each tube using the calibration curve 

that we constructed using the set of four, colored particles (1.03, 1.06, 1.10, 1.13 g/cm3). 

In this experiment, we used an aqueous solution of 0.100 M MnCl2 (We prepared this 

solution from a stock solution, 3.000±0.001 M) to levitate the particles, and calculated its 

density and magnetic susceptibility using the formula as we described elsewhere in 

detail:2  

𝜌𝑚 = 1008.1 kg/m3 

𝜒𝑚 = 9.58 × 10−6 

The small density particles we used are based on polyethylene, and they have a 

magnetic susceptibility 𝜒𝑠 of −9.50 × 10−6.4 

We estimated 𝐾1 and 𝐾2 for each individual tube. We combined individual values 

of 𝐾1 or 𝐾2 across the plate, and obtained the averages for 𝐾1= 0.28±0.03 (mean±SD, 

T2/m), and 𝐾2= 31±14 (mean±SD, T2/m). 

We next determined the centroid of a cluster of the copper or glass particles that 

levitated in an aqueous solution of 3 M DyCl3, and used eq S17 (and its associated pair of 

𝐾1 and 𝐾2) to estimate the value of 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧) at that distance D. 
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We finally inserted the estimated value of 𝐵𝑧(𝑑𝐵𝑧/𝑑𝑧), the experimentally 

measured density of the DyCl3 solution (1.6927 g/cm3), and the estimated magnetic 

susceptibility of the DyCl3 solution (1.56 × 10−3, eq S11), to calculate the density of the 

cluster of the copper or glass particles. In this calculation, we neglected the magnetic 

susceptibility of the sample (i.e., the copper and glass particles) because they are 

negligible compared to the magnetic susceptibility (1.56 × 10−3) of the DyCl3 solution 

that we used to levitate the samples. 

We obtained the averages of the estimated densities across the plate for the 

sample of copper powder (7.7±0.6 g/cm3, N=95 wells) and for the sample of glass 

particles (2.4±0.4 g/cm3, N=95 wells). 
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