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Experimental 

Materials: Tridodecylmethylammonium chloride (TDMACl), bis(ethylhexyl) sebacate 

(DOS), high molecular-weight poly(vinylchloride) (PVC), tetrahydrofuran (THF, inhibitor-free, 

for HPLC) monohydrogen potassium phosphate, potassium chloride, sodium chloride, sodium 

hydroxide, sodium nitrate, ascorbic acid, deoxycholic acid, potassium bicarbonate, potassium 

salicylate, DL-lactic acid, pyruvic acid, and sodium phosphate were purchased from Sigma-

Aldrich. Bilirubin was purchased from Toronto Chemical Research. Blood serum (from human 

male AB plasma, USA origin, sterile-filtered) was purchased from Sigma-Aldrich. 

Measurements and Equipment: We measured the response of the sensors using a 16-

channel potentiometer (Lawson Labs) at room temperature against a free-flow double-junction 

AgCl/Ag reference electrode (with a movable glass sleeve junction, 1.0 M lithium acetate bridge 

electrolyte) purchased from Mettler Toledo. We performed the calibrations of BR through 

performing successive dilutions of a 20 mL sample. Each 18 mL aliquot removed was replaced 

with the addition of 18 mL of sodium phosphate buffer (pH = 8.6), and the emf was measured for 

each dilution. 

Fabrication of Conventional Ion-Selective Electrodes: The membrane is composed of 990 

mg of PVC (poly(vinylchloride), 1980 mg of DOS (Bis(2-ethylhexyl) sebacate, Selectophore 

grade) and 15 mg of TDMACl (tridodecylmethylammonium chloride). We dissolved these 

components in 8 mL of THF, stirred the mixture until a homogenous solution was achieved, 

poured the solution into a petri dish and left it covered overnight; this procedure allowed the 

THF to evaporate and formed the membrane that provided the ISE. Circular pieces of the 

membrane with a diameter of ~ 1.1 cm and thickness of ~ 1.2 mm were cut and placed onto PVC 

tubing, which is wet with THF (causing the membrane to be fused to the PVC tubing). The PVC 
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tube was filled with 2 mL of an inner-filling solution consisting of 0.5 mM BR in phosphate 

buffer (pH 8.6) and 15 mM NaCl. The membrane was placed into a solution of 0.5 mM BR for 3 

hours before being placed in a 10 M solution for 3 hours, following the immersion of a 

Ag/AgCl wire into the inner-filling solution. This procedure allows BR to replace the chloride 

ion associated with TDMA. 

Fabrication of the paper-based ion-selective electrode: We patterned microfluidic zones 

into chromatography paper using a wax printer and placed the patterned paper in an oven (T = 

145 oC) for 60 s to allow the wax to penetrate the paper fully. Using a laser-cutter (VersaLASER 

VLS3.50, Universal Laser Systems) we cut stencils for defining regions of ink. We aligned a 

stencil onto the wax-printed paper, and painted Ag/AgCl ink (C2140310D1, Gwent Group of 

Companies) onto the stencils, followed by removal of the stencil, and allowed the ink to dry 

overnight.  

 The membrane for the paper-based ion-selective electrode consisted of the same ratio of 

components used in the conventional ISE. We reduced the thickness of the membrane to 0.75 

mm for incorporation into the paper-based device by using 660 mg of PVC, 1330 mg of DOS, 10 

mg of TDMACl and 8 mL of THF. We poured the membrane solution into a petri dish and left it 

overnight, thus allowing the THF to evaporate. We cut square segments of the membrane (1.2 x 

1.2 cm) and placed them in a solution of 0.5 mM BR for 6 hours to allow the exchange of BR for 

chloride ions in the membrane.    

Measurements with paper-based ISE: To perform a measurement using the paper-based 

ISE, we taped the bottom layer of the device to a glass slide and added 15 L of reference 

solution (1 M NaCl) and 15 L of sample (different concentrations of BR) to the reference and 
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sample zones, respectively. Next, we placed the ISM onto the sample zone and covered the ISM 

with the indicator electrode. We added 15 L of inner-filling solution (0.5 mM BR and 15 mM 

NaCl) to the indicator electrode. All solutions were added through pipetting. We placed a second 

glass slide on top of the device and held it in place by two paper clips. We connected the 

reference and indicator electrodes to a potentiometer through alligator clips prior to recording a 

measurement.  

Determination of Selectivity Coefficients: The selectivity coefficients were determined 

using the separate solution method (SSM) according to the procedure outlined in the IUPAC 

recommendations.[1] In order to obtain unbiased selectivity coefficients, we conditioned the 

electrode in a solution of 1 mM KCl (in sodium phosphate buffer, pH = 8.6) overnight. The 

measured emf of 1 mM of the interfering ions (EI) was used in the equation:  

𝑙𝑜𝑔𝐾𝐵𝑅,𝐼
𝑃𝑜𝑡 =

(𝐸𝐼 − 𝐸𝐵𝑅)𝑧𝐵𝑅𝐹

𝑅𝑇𝑙𝑛10
 

Where R is the gas constant, T is the temperature, F is Faraday’s constant, and z is the charge 

of BR.By using the emf response to a 1 mM solution of BR (EBR) and the slope (zBRF/RTln10) of 

the linear response of the BR-ISE, the selectivity coefficients (𝑙𝑜𝑔𝐾𝐵𝑅,𝐼𝑃𝑜𝑡 ) were obtained and are 

presented in Table 1.  

Preparation of solutions  

Preparation of Phosphate buffer 20 mM (pH 8.6): We dissolved 2.74 g of sodium dihydrogen 

phosphate in 900 mL of distilled water and adjusted the pH by adding 1 M NaOH dropwise until 

the pH reached 8.6. The solution was then adjusted to 1 L. 
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Preparation of Solution of 1 mM Bilirubin: We dissolved 29.2 mg of BR in 2 mL of 0.1 M 

NaOH and adjusted the volume to 50 mL with 20 mM phosphate buffer (pH 8.6).  

Preparation of Solutions for Selectivity Studies: We dissolved the required amount of chemical 

to make 20 mL of a 1 mM solution of the potentially interfering species in 20 mM sodium 

phosphate buffer (pH 8.6). 

Background 

Techniques to measure bilirubin 

  

Table S1: Techniques employed for the measurement of bilirubin. 

Technique  Mode of Operation Linear Range 

(M) 

Limit of 

Detection (M) 

Reference  

Electrochemical Amperometry 4 – 100 4 [1] 
Electrochemical Amperometry 0.01 – 500 0.0001 [2] 
Electrochemical Voltammetry 1.2 – 420 0.025 [3] 
Electrochemical Voltammetry 5 – 600 — [4] 
Electrochemical Impedance 0.01 – 500 0.005 [5] 
Optical  Fiber Optic 0.1 – 300 0.1 [6] 
Optical  UV-VIS 0.068 – 17.2 0.068 [7] 
Optical  UV-VIS 0.1 – 50 0.04 [8] 
Optical  Fluorescence 25 – 50 0.15 [9] 
Separation HPLC-TLS 0.00025 – 0.15 0.00009 [10] 
Separation HPLC 0.01 – 2 0.45 [11] 
Separation Capillary 

Electrophoresis 
10 – 200 9 [12] 

Separation Capillary 
Electrophoresis 

5 – 206 2 [13] 

 

The Van Den Bergh reaction — which involves reaction of diazotized sulfanilic acid with BR 

and produces the UV-active compound azobilirubin — is highly dependent on pH, and requires a 

UV-VIS spectrophotometer.[14,15] Analytical methods depending on fluorimetry, and techniques 

requiring separations, often require time-consuming sample preparation steps and have a high 
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cost.[16-18] Electrochemical methods (enzymatic and non-enzymatic) have also been employed to 

measure free BR, although enzymatic sensors suffer from the high cost and low stability of 

enzymes (bilirubin oxidase, BOx, loses 50% of its activity after 17 h at 37 oC ).[19-21] The 

currently utilized method for detection of BR in hospital settings is transcutaneous 

bilirubinometry (a skin reflectance technique). This method has the benefit of being a non-

invasive approach, but has a tendency to overestimate the actual amount of BR in Asian 

newborns while underestimating the amount of BR in white newborns.[22] Furthermore, 

transcutaneous bilirubinometers are costly and often require expensive calibration standards. 

This high cost makes their use in resource-limited regions infeasible (and it is in these regions 

where the majority of deaths stemming from hyperbilirubinemia occur).[23] 
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Figure S1. Emf response of the ISE (conditioned in 1 mM KCl) to 1 mM solutions of the 

specified anions in sodium phosphate buffer (pH 8.6).  
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Figure S2. Photographs of the paper-based device. A. Bottom layer, B. Bottom layer with BR 

added to sample zone and NaCl added to reference zone. C. BR-ion-selective membrane (BR-

ISM) placed on sample zone. D. Indicator electrode placed on top of the BR-ISM, with added 

inner filling solution. E. Connection to potentiometer made through connecting alligator clips to 

the Ag/AgCl electrodes.  
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