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S1. Magnetism Relevant to MagLev 

S1.1 Diamagnetism 

Diamagnetism is a characteristic of all matter, but is only apparent in materials with no 

unpaired electrons. If, however, a molecule or material contains unpaired electrons, then its 

interactions with an applied magnetic field may dominate diamagnetism. To understand the 

origin of diamagnetism, consider a simplified classical picture of an electron orbiting the nucleus 

of an atom.  As a charge in motion, this electron generates a magnetic field.  When an external 

magnetic field is applied, the electron alters its motion to oppose the change of field (Lenz’s 

law).[1]  The consequence of this effect is induced magnetization in a substance that opposes the 

applied field; this molecular-level response to an applied magnetic field is called diamagnetism. 

The effect of diamagnetism is, thus, universal for all matter. Most organic materials are 

diamagnetic. Examples of organic diamagnetic materials include water, most organic liquids, 

typical biological polymers such as proteins (those that do not contain transition metals), DNA, 

and carbohydrates, and most synthetic or semi-synthetic polymers. A few representative 

exceptions include stable free radicals (e.g., trityl and nitroxyls), O2, many organometallic 

compounds and chelates of transition metals; these may be paramagnetic (see Section S1.2).  

A measure of the type and magnitude of magnetization of a material in response to an 

applied magnetic field is the magnetic susceptibility, 
𝑣
 (volume susceptibility, unitless), as 

defined in eq S1, where M⃗⃗⃗  (A m-1) is the magnetization of the material, H⃗⃗  (A m-1) is the applied 

external magnetic field. Eq S2 describes the closely related magnetic field B⃗⃗  (T) present in a 

material, where 𝜇0 is the magnetic permeability in vacuum. 


𝑣
  = M⃗⃗⃗ /H⃗⃗        (S1) 
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   B⃗⃗ = 𝜇0(H⃗⃗ + M⃗⃗⃗ ) = 𝜇0(1 + 
𝑣
)H⃗⃗                             (S2)          

The magnetic susceptibility of typical diamagnetic materials is around -10-5 (in SI unit, the 

negative sign indicates that the induced magnetization opposes the applied field), and is 

essentially indistinguishable for many materials, including some of the metals and the majority 

of the organic materials (Figure 2). Bismuth and pyrolytic graphite are notable exceptions, and 

are up to two orders of magnitude more diamagnetic than common diamagnetic materials. 

Because the induced magnetization of diamagnetic materials is negative and small, they are 

slightly repelled from regions of magnetic field. This repulsion can be sufficient to suspend the 

most diamagnetic materials (e.g., pyrolytic graphite) against gravity in air (and even in vacuum) 

using permanent magnets, while it is not noticeable when common diamagnetic materials 

interact with the modest field of the permanent magnets in air (although they can be important 

with the much higher fields of superconducting magnets). The magnetic susceptibility of most 

diamagnetic materials is independent of temperature over commonly encountered ranges.[2] 

S1.2 Paramagnetism  

In one view of paramagnetism, it originates from the unpaired electrons present in the 

material that produces permanent magnetic moments. In the absence of an applied magnetic 

field, the spins of the unpaired electrons are randomly oriented in space and time due to thermal 

energy: background magnetic fields—a field gradient—(e.g., from the earth) introduce 

interactions far weaker that those from thermal motions. The presence of an external magnetic 

field thus tends to align (weakly) the magnetic moments in the direction of the applied field. The 

response of paramagnets to an applied field at room temperature is typically three orders of 

magnitude greater  
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than that of diamagnets. They are attracted to, rather than repelled by, the applied field. Typical 

magnetic susceptibilities of paramagnets are ~ 10−3−10−5 (in SI unit). Paramagnetic species 

relevant to the type of MagLev we discuss in this review include simple paramagnetic salts, such 

as MnCl2, GdCl3, HoCl3, DyCl3, CuCl2, and FeCl2, and the chelates of some of these ions (e.g., 

Gd3+). See Section 3.3 for a more detailed discussions.   

S1.3 Ferromagnetism 

Ferromagnetism is the property of a material that exhibits spontaneous (and permanent) 

magnetic moments; that is, the material has a high magnetic moment even in the absence of an 

external field.[1]  Ferromagnetism only occurs in materials that contain strongly interacting 

unpaired spins. These spins in the material interact in such a way that they align with each other 

in the same aligned direction in localized regions—termed magnetic domains. In the apparently 

“unmagnetized” ferromagnetic materials, the magnetic moments of the magnetic domains are 

disordered and thus, effectively cancel. An external magnetic field can align the magnetic 

domains in the materials, and the collective alignment of spins in magnetic domains produces a 

net magnetic moment. Strong magnetic moments remains in ferromagnetic materials when the 

applied magnetic field is removed. Common ferromagnetic materials are iron, iron oxides (e.g., 

magnetite), cobalt, nickel, their alloys (e.g., Alnico), and, importantly, alloys containing rare-

earth metals (e.g., NdFeB and SmCo). Permanent NdFeB magnets that enable the type of 

MagLev we describe in this review are ferromagnetic.[3,4]   

S1.4 Superparamagnetism 

Superparamagnetic materials behave qualitatively similarly to paramagnetic materials in 

an applied magnetic field, but exhibit a much stronger response (in terms of magnetic 

susceptibility). Superparamagnetism exists in small ferro- or ferri-magnetic nanoparticles 
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(especially iron oxides in the range of 3-50 nm), and they are effectively single magnetic 

domains. The magnetization of individual nanoparticles can flip randomly in directions due to 

thermal motions, and thus, they do not exhibit a net magnetization; an applied magnetic field, 

however, can align the magnetic moments of individual nanoparticles, and thus, produces a 

strong magnetic response in these materials (often much larger than paramagnetic materials). 

Unlike ferro- or ferrimagnetic materials, the magnetic moments of these nanoparticles are not 

retained upon removal of the magnetic field. This type of magnetism is not commonly used in 

the MagLev techniques we describe here (See Section 3.3.6 for more discussions); it is, however, 

perhaps the most recognized and used form of magnetism in biochemistry and biology, and is 

employed to separate biological entities (e.g., proteins, organelles, viruses, bacteria, and 

mammalian cells) using affinity-ligand-coated superparamagnetic particles, and is the basis of 

ferrofluids.[5–7] Table 1 compares MagLev and magnetic separations using superparamagnetic 

particles.  

S2. Qualitative Characteristics of MagLev 

S2.1 Basic Principles of MagLev 

Stable levitation of a suspended diamagnetic object in a paramagnetic medium in an 

applied magnetic field indicates a minimum in the total energy of the system, including both the 

gravitational energy and the magnetic energy (Figure 1F). In the absence of an applied magnetic 

field, a suspended object in a medium will either sink or float to minimize the total gravitational 

energy, including the gravitational energy of the object and of the medium that is displaced by 

the object. For example, an object having a density higher than the medium (𝜌𝑠 > 𝜌𝑚) will 

always sink in a gravitational field to minimize its height, and thus, the gravitational energy of 

the system. The magnetic energy of the system, including the diamagnetic object and the 
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displaced paramagnetic medium, however, has a different profile in space (See Figure 1F for the 

profile of 𝑈𝑚 for the “standard” MagLev system). This magnetic energy is a function of three 

parameters: the volume of the object, the difference in magnetic susceptibility of the object and 

the suspending medium, and the strength of the magnetic field at the position the object situates 

in space. The magnetic field will always tend to minimize the magnetic energy by pushing the 

suspended object to regions in which the field strength is weaker (that is, toward the center of the 

“magnetic bottle”). Stable levitation of the suspended object will occur only if the sum of the 

magnetic energy and the gravitational energy of the system reaches a minimum. For stable 

levitation, any deviation of the object from the equilibrium position will always incur an energy 

cost; the object is, therefore, energetically “trapped” at this position, or levitated stably in the 

suspending medium. In limiting cases where the gravitational energy dominates (e.g., the sample 

is significantly more dense or less dense than the medium, 𝜌𝑠 ≫ 𝜌𝑚 𝑜𝑟 𝜌𝑠 ≪ 𝜌𝑚), the system 

cannot reach a minimum in energy, and thus, the object will sink or float even under an applied 

magnetic field. 

MagLev may be also understood—perhaps more intuitively—from the perspective of 

interacting physical forces. (Section S3 gives the quantitative descriptions.) MagLev achieves 

levitation of a diamagnetic object suspended in a paramagnetic medium by balancing the 

magnetic force and the force of gravity the object experiences. At equilibrium, these two forces 

are equal in magnitude but act in opposite directions. Since the physical force is the spatial 

derivative of energy, the statements are equivalent that the total energy of the system reaches a 

minimum and that the magnetic force counterbalances the gravity acting on the levitated object 

(and the displaced paramagnetic medium). 
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S2.2 What is Important? 𝝆, 𝚫𝝆, 𝝌, 𝚫𝝌, �⃗⃗� , 𝛁�⃗⃗� , �⃗⃗� , 𝑽,  …? 

The force of gravity and the buoyancy acting on any object (𝐹𝑔⃗⃗  ⃗) suspended in any 

medium depends on three parameters: the acceleration due to gravity 𝑔 , the volume of the object 

𝑉, and the difference in density between the object and the surrounding medium ∆𝜌. The 

magnetic force (𝐹𝑚⃗⃗ ⃗⃗  , for a homogeneous diamagnetic sphere) depends on the volume of the object 

𝑉, the magnitude of the magnetic field ||�⃗� ||, the positional variation of the magnetic field (i.e., 

the magnetic field gradient ∇�⃗� ) at the position where the object is situated in the magnetic field, 

and the difference in magnetic susceptibility ∆𝜒 of the diamagnetic object and the suspending 

medium that surrounds it. MagLev thus requires considerations of the physical (and also 

chemical) characteristics of the diamagnetic object, properties of the surrounding medium, and 

the strength and gradient of the magnetic field in space.  

S3. The “Standard” MagLev System and its Quantitative Description 

Eqs S3-6 give the quantitative relationship for the gravitational and magnetic energies 

and the physical forces in MagLev systems. In these equations, 𝑈𝑔 is the gravitational energy of 

an object suspended in a medium under gravity. (The reference point is defined as z=0.) 𝑈𝑚 is 

the magnetic energy of a diamagnetic object suspended in a paramagnetic medium under an 

applied magnetic field. 𝐹𝑔⃗⃗  ⃗ is the buoyancy-corrected gravitational force acting on the suspended 

object. 𝐹𝑚⃗⃗ ⃗⃗   is the magnetic force the suspended diamagnetic object experiences as a result of 

direction interaction of the magnetic field and the paramagnetic medium that surrounds it. 𝜌𝑠 is 

the density of the object. 𝜌𝑚 is the density of the paramagnetic medium. V is volume of the 

object. 𝑔  is the acceleration due to gravity (where ||𝑔 || is 9.80665 m s-2 on earth). z is the z-

coordinate of the object as defined in Figure 1A.  𝜒𝑠 is the magnetic susceptibility of the object. 
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𝜒𝑚 is the magnetic susceptibility of the paramagnetic medium. 𝜇0 is the magnetic permeability 

of free space. �⃗�  is the magnetic field. ∇ is the del operator. Eq S7 describes the conditions under 

which the system reaches equilibrium, and the object achieves stable levitation. Eq S8 describes 

the balance of the physical forces at equilibrium. 

𝑈𝑔 = (𝜌𝑠 − 𝜌𝑚)𝑉𝑔𝑧                                             (S3) 

𝑈𝑚 = −
1

2

(𝜒𝑠 − 𝜒𝑚)

𝜇0
𝑉�⃗� • �⃗�                                (S4) 

𝐹𝑔⃗⃗  ⃗ = −∇𝑈𝑔 = (𝜌𝑠 − 𝜌𝑚)𝑉𝑔                                 (S5) 

𝐹𝑚⃗⃗ ⃗⃗  = −∇𝑈𝑚 =
(𝜒𝑠 − 𝜒𝑚)

𝜇0
𝑉(�⃗� • ∇)�⃗�                (S6) 

𝑑(𝑈𝑔 + 𝑈𝑚)

𝑑𝑧
= 0                                                     (S7) 

𝐹𝑔⃗⃗  ⃗ + 𝐹𝑚⃗⃗ ⃗⃗  = 0                                                             (S8)                                  

S3.1 Relating Density to the Height of Levitation  

The standard MagLev system uses an approximately linear magnetic field gradient to 

levitate diamagnetic objects in a paramagnetic medium. Eq S9 gives the magnetic field strength 

along the central axis between the two magnets (north-poles facing in this example). In eq S9, 𝐵0 

is the strength of the magnetic field at the center on the top face of the bottom magnet. d is the 

distance of separation between the two magnets. The origin of the MagLev frame of reference is 

placed at the center on the top face of the bottom magnet. At d = 45 mm (or below), the magnets 

generate an approximately linear field between the magnets along the central axis, and the field 

has a z-component only, Bz, because of the symmetry of the field on the x-y plane (Figure 1A). 
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Eq S10 gives the magnetic energy, 𝑈𝑚, of a suspended diamagnetic object and the equal volume 

of the paramagnetic medium displaced by the object under the applied magnetic field described 

by eq S9. Eqs S3 and S10 were used to construct the plots in Figure 1F. 

�⃗� = (

𝐵𝑥

𝐵𝑦

𝐵𝑧

) ≈ (

0
0

−
2𝐵0

𝑑
𝑧 + 𝐵0

)                                           (S9) 

𝑈𝑚 = −
1

2

(𝜒𝑠 − 𝜒𝑚)

𝜇0
𝑉𝐵0

2 (−
2

𝑑
𝑧 + 1)

2

                            (S10) 

Using the explicit expression of the magnetic field (eq S9), we can solve eq S7 for the z-

coordinate, or the levitation height h, at which the object reaches stable levitation. Since the 

origin is placed on the top face of the bottom magnet, the levitation height is the distance from 

the centroid (the geometric center) of the object to the bottom magnet. When deriving eq S11, we 

assumed that the object can be quantitatively treated as an infinitesimally small volume. 

Rearranging eq S11 gives eqs S12-14, describing the density of the levitated object as a function 

of its levitation height, h. 

ℎ =
(𝜌𝑠 − 𝜌𝑚)𝑔𝜇0𝑑

2

(𝜒𝑠 − 𝜒𝑚)4𝐵0
2 +

𝑑

2
                      (S11) 

𝜌𝑠 = 𝛼ℎ + 𝛽                                               (S12) 

𝛼 =
(𝜒𝑠 − 𝜒𝑚)4𝐵0

2

𝑔𝜇0𝑑2
                                  (S13) 

𝛽 = 𝜌𝑚 −
(𝜒𝑠 − 𝜒𝑚)2𝐵0

2

𝑔𝜇0𝑑2
                       (S14) 
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S3.2 Approximate and Exact Solutions for a Spherical Object 

Eq S6 represents an approximation that assumes that the magnetic fields generated by the 

magnetized object and the magnetized medium are negligible relative to the field generated by 

the permanent magnets. An exact expression would include the perturbations to the magnetic 

field due to the magnetization of the object and the medium. A fully general and invariant 

expression is attainable, but is beyond the scope of this review.[8] The much simpler, and most 

relevant case is when the magnetic field varies slowly in space relative to the size of the sample. 

For a spherical object, this expression was first derived in the context of electric fields, where the 

effect is commonly referred to as dielectrophoresis.[9] Eq S15 is the analogous equation for the 

magnetic force on a spherical object suspended in a magnetic medium under the influence of an 

inhomogeneous, but gradually varying magnetic field.[8] 

𝐹𝑚𝑎𝑔
′ =

3

2
𝜇𝑚 (

𝜇𝑠 − 𝜇𝑚

2𝜇𝑚 + 𝜇𝑠
)𝑉𝛻�⃗� 2                       (S15) 

 

In eq S15, �⃗�  represents the magnetic field generated by the magnets alone. 𝜇𝑠 is the magnetic 

permeability of the object. 𝜇𝑚 is the magnetic permeability of the suspending medium. The 

following algebraic re-arrangement enables us to compare eq S16 and eq S6 directly. 

𝐹 =
1

2

𝜒𝑠 − 𝜒𝑚

𝜇0
(

1 + 𝜒𝑚

1 +
2
3𝜒𝑚 +

1
3𝜒𝑠

)𝑉𝛻�⃗� 𝟐 =
1

2

𝜒𝑠 − 𝜒𝑚

𝜇0
𝛼𝑉𝛻�⃗� 𝟐                  (S16) 

Here we see that the rigorous approach effectively adds a correction factor 𝛼 (the term in 

the parenthesis in eq S16). To gauge the importance of this factor, we can perform a Taylor 

expansion around small values of 𝜒𝑚 and 𝜒𝑠 and only keep first-order terms: 
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α ≈  1 +
1

3
𝜒𝑚 −

1

3
𝜒𝑠 + ⋯                      (S17) 

The dominant contribution to deviate α from unity will be from 𝜒𝑚, which does not exceed 10-3 

for aqueous paramagnetic salts ordinarily used in MagLev we describe in the Review. The 

correction due to magnetization of the medium will therefore be < 0.1%. A correction this small 

is well below the precision of measuring the position of the object, and can therefore be safely 

neglected. If, however, some type of non-standard medium or sample were used (e.g., a 

superparamagnetic fluid, such as a ferrofluid, or a (super)paramagnetic object), the levitation 

height would be modified by ℎ → ℎ/α. The case of a ferrofluid would include further 

modifications to the derivation, to consider the permanent magnetization of the fluid and/or 

object and magnetic hysteresis, and is beyond the scope of this review. 

S4. Error Analysis 

To estimate the experimental errors in measuring the unknown density of samples using 

the “relative” approach, we assume that the experimentally determined constants α and β (eqs 

S13 and S14) from the calibration curves are known exactly, and treat the uncertainty in 

determining the levitation height is the only source of error. Eq S18 gives the equation to 

calculate the associated experimental error. 

𝛿𝜌𝑠 = |
𝑑𝜌𝑠

𝑑ℎ
| 𝛿ℎ = |𝛼|𝛿ℎ                   (S18) 

The second approach to measure an unknown density of a sample is to directly calculate 

its value from its levitation height using known values of the physical parameters described in eq 

S12, including the density of the medium 𝜌𝑚, the magnetic susceptibilities of the sample 𝑥𝑠, and 

the medium 𝑥𝑚, the magnitude of the magnetic field 𝐵0, the distance of separation between the 
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two magnets d, and the levitation height h. This “direct” approach does not require the use of 

density standards to calibrate the system; it, however, places three requirements on the users: (i) 

a working knowledge of the physical principles of the system; (ii) known values for all the 

physical parameters described in eq S12 at the time of density measurement; and (iii) 

considerations of environmental influences on the measurements, including the temperature-

dependency of 𝜌𝑚, 𝑥𝑚, 𝑥𝑠, and 𝐵0. Typical experimental values for the standard MagLev system 

are given elsewhere in detail.[10] 

The error analysis for the “direct” approach is more complex than the “relative” approach 

because of the need to account for every source of random error when using eq S12 to calculate 

the unknown density of the sample. The density of the sample 𝜌𝑠 can be treated as a function of 

the following six independent variables, including the magnitude of the magnetic field 𝐵0, the 

magnetic susceptibility of the sample 𝑥𝑠, the concentration of the paramagnetic medium 𝑐, the 

distance of separation between the magnets d, the levitation height h, and the ambient 

temperature T. (The density of the paramagnetic medium and the magnetic susceptibility of the 

medium are not independent variables in that both parameters are a function of the concentration 

of the paramagnetic medium and the ambient temperature.) Eq S19 gives the standard expression 

to calculate the error in the density of the sample 𝛿𝜌𝑠 when directly using eq S12 to estimate 𝜌𝑠. 

Example of error analysis for the “direct” approach is given in detail elsewhere.[10] For the 

majority of the density measurements, the “relative” approach is almost always preferred due to 

its simplicity and ease with which to implement experimentally. 

𝛿𝜌𝑠 = √(
𝜕𝜌𝑠

𝜕𝑇
𝛿𝑇)

2

+ (
𝜕𝜌𝑠

𝜕𝑐
𝛿𝑐)

2

+ (
𝜕𝜌𝑠

𝜕𝑥𝑠
𝛿𝑥𝑠)

2

+ (
𝜕𝜌𝑠

𝜕ℎ
𝛿ℎ)

2

+ (
𝜕𝜌𝑠

𝜕𝑑
𝛿𝑑)

2

+ (
𝜕𝜌𝑠

𝜕𝐵0
𝛿𝐵0)

2

  (S19) 
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S5. Theoretical Guide to Adjust Sensitivity and Dynamic Range 

We define the sensitivity of a MagLev system as the change in levitation height per unit 

change in density—i.e., the slopes of the calibration curves on plots of levitation height vs. 

density (Figure 5B). We define the dynamic range as the range of density over which we can 

perform density measurements. Operationally, the dynamic range of the standard MagLev 

system spans the entire distance of the separation between the two magnets (i.e., the entire range 

of the linear magnetic field). Dynamic ranges for MagLev systems other than the standard 

configuration may be extended to include the nonlinear portions of the magnetic field. This 

review primarily focuses on the approaches that exploit approximately linear magnetic fields. 

Eqs S20 and S21 give the quantitative description of the sensitivity and dynamic range of 

density measurements for the standard MagLev system. Eq S22 describes the density of the 

paramagnetic medium as a function of the ambient temperature T, the type of solvent used to 

prepare the medium, and the concentrations of dissolved species, both diamagnetic and 

paramagnetic). In eq S22, 𝑐𝑖 (𝑖 = 1, 2, … ) stands for the concentration of the solute 𝑖. 

𝑆𝑧 =
∆ℎ

∆𝜌
=

𝜇0𝑔

(𝜒𝑠 − 𝜒𝑚) (
2𝐵0
𝑑

)
2                                                        (S20) 

∆𝜌𝑟𝑎𝑛𝑔𝑒 = 𝜌𝑧=0 − 𝜌𝑧=𝑑 =
2(𝜒𝑠 − 𝜒𝑚)

𝜇0𝑔
(
2𝐵0

𝑑
)𝐵0                     (S21) 

𝜌𝑚 = 𝑓(𝑇, 𝑠𝑜𝑙𝑣𝑒𝑛𝑡, 𝑐1, 𝑐2, … )                                                         (S22) 

In eq S20, the sensitivity of the MagLev system 𝑆𝑧 (i.e., the slope of a calibration curve), is 

expressed as the ratio of the change in levitation height ∆ℎ to the change in density ∆𝜌. The 

quantity 2𝐵0 𝑑⁄  is the gradient of the linear magnetic field between the two magnets. The 
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dynamic range is the difference in density for objects that levitate between the two magnets—

that is, the range in density that can be levitated using the entire linear gradient between the 

magnets. The middle point of the dynamic range is the density of the paramagnetic medium 𝜌𝑚. 

These three equations form the theoretical basis used to guide the experimental design to tune the 

sensitivity and the dynamic range of the standard MagLev system, and can be, in fact, extended 

to any MagLev system using a linear magnetic field so long as the linear field (i) is aligned with 

the vector of gravity, and (ii) has its null point (where B = 0 T) located physically in the midpoint 

of the gradient. These equations also show that these two analytical parameters—sensitivity and 

dynamic range—are inherently coupled and trade-offs often need to be made.  

We emphasize that precision and accuracy—two closely related but distinct 

characteristics of any analytical system—are also relevant to the discussions of the sensitivity 

and dynamic range. Precision describes the reproducibility of the measurements—that is how 

reproducible the measurements are. Accuracy describes the “closeness” of a measured value to 

the true value of the sample (e.g., the true density of a sample). A measurement (e.g., of a sample 

in a MagLev system) can be precise but not accurate if the system is not calibrated correctly. 

Both precise and accurate density measurements can be achieved using MagLev systems 

optimized for high-sensitivity measurements; for such measurements, high-quality density 

standards are essential to calibrate the system. 

S6. Understanding and Controlling Orientation of Levitated Objects  

For an arbitrarily-shaped, homogenous object, the total magnetic potential energy of the 

object can be described by eq S23, where 𝛽 = 2𝐵0
2 𝜇0𝑑

2⁄ , 𝐵0 is the field at the surface of one of 

the magnets, and d is the distance between the faces of the magnets. In this equation, we assumed 

that the magnetic field B is linear, and Δ𝜒 is uniform throughout the volume of the object. 
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𝑈𝑚𝑎𝑔 = ∫ 𝑢𝑚𝑎𝑔𝑑𝑉
𝑉

= ∫ −
Δ𝜒

2𝜇0
|𝐁(𝐫)|𝟐𝑑𝑉

𝑉
= 𝛽Δ𝜒∫ 𝑧𝟐𝑑𝑉

𝑉
                     (S23) 

To calculate the integral term, we must parameterize in terms of the body-fixed, local 

coordinate system of the object 𝐫′ = [𝑥′, 𝑦′, 𝑧′]. In general, a principal coordinate system 

can be found that coincides with the geometric centroid of the object. In this coordinate system, 

the determining factors in describing the orientation of the object are the second-moments of area 

𝜆𝑘′ for 𝑘′ ∈ {𝑥′, 𝑦′, 𝑧′}, as defined in eq S24. 

𝜆𝑘′
2 =

1

𝑉
∫ 𝑘′2
𝑉

𝑑𝑉′                     (S24)                      

The orientation of an arbitrary homogenous object can be described entirely by the 

competition between the 𝜆𝑘′ values. In particular, for a linearly varying magnetic field, the 

principal axis associated with the smallest of the 𝜆𝑘, values always aligns with the z-axis of the 

MagLev device. 

To understand this behavior intuitively, we consider the example of a cylinder (Figure 

10B), which has principal axes that have a double degeneracy. If we choose a principal 

coordinate system such that the z’-axis aligns with the shaft, then 𝜆𝑥′ = 𝜆𝑦′. Finally, we consider 

rotation about the x-axis (this is general, because of the degeneracy), and so only 𝑅 =

(𝜆𝑧′/𝜆𝑦′)
2
, the competition between 𝜆𝑦′ and 𝜆𝑧′, matters. In this case, the magnetic potential 

energy reduces to eq S25. 

𝑈(𝛼, ℎ) = 𝛽𝑉Δ𝜒𝜆𝑦′
2(1 − 𝑅)sin2𝛼 + Δ𝜒𝑉𝛽𝑉ℎ2                    (S25) 

Inspection of eq S25 reveals that the magnetic torque and height of the object are decoupled; this 

behavior generalizes to non-degenerate objects as well, and enables us to separately find the 
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equilibrium height of the centroid of the object and the orientation of object around the principal 

axes. Figure 10B shows a plot of the first term of eq S25 (the angle dependent part). If R > 1, the 

shaft is longer than the face is wide, the minima in energy occur 𝛼 ∈ {90°, 270°}, and the 𝑧′-

axes orients perpendicular to the z-axis (shaft pinned to the x/y plane). If R < 1, the shaft is 

shorter than the face is wide, the minima in energy occur 𝛼 ∈ {0°, 180°}, and the z’-axes 

orients parallel to the z-axis (shaft pinned to the z-axis). In all cases, the principal axis associated 

with the smallest second-moment of area orients along the magnetic field gradient (z-axis). A 

transition between the behaviors occurs at R = 1; this behavior can be seen for a variety of 

objects with the same type of degeneracy in Figure 10C.  

S7. Quality Control: Heterogeneity in Density in Injection-Molded Parts 

For a non-spherical object with a density-based defect, we first analyze it based on shape 

and move to the principal axis where the origin of body-fixed coordinate system of the object lies 

at the geometric centroid, and the axes are aligned with the principal axes. If we consider the 

simple example of rectangular rod (Figure 11A) with length L, width W, and density 𝜌𝑟, together 

with a cubic inclusion with density 𝜌𝑖 and volume Vi, located at a distance wi from the centroid 

of the rod, and constrained to the w-axis of the rod, then the angle-dependent part of potential 

energy reduces to eq S26. 

𝑈(𝜃) =
1

12
𝛽Δ𝜒𝑉(𝐿2 − 𝑊2) sin2 𝜃 + (𝜌𝑖 − 𝜌𝑟)𝑉𝑖𝑔𝑤𝑖 cos 𝜃                      (S26) 

There are two components to the rotational potential energy on the object, the first due to 

the shape of the object (Section S6), and a new term for the projection of the center-of-mass of 

the object along the z-axis of the MagLev device. In general, the second term perturbs solutions 

from the first term, and solutions will take the form of 𝜃 = 𝜃𝑚𝑎𝑔 + 𝛼, where 𝜃𝑚𝑎𝑔 is the 
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equilibrium orientation of the object due to shape alone, and 𝛼 the added tipping due to the 

inclusion. If 𝜌𝑖 < 𝜌𝑟, the inclusion is less dense than the object (e.g., air) and the side of the 

object with the inclusion will tend to tip up. If 𝜌𝑖 > 𝜌𝑟, the inclusion is more dense than the 

object, and the side of the object with the inclusion will tend to tip down. For example, Figure 

11B shows the theoretical and experimental levitation angles 𝛼 for 3D-printed rods having a 

known type of inclusions that vary in size at the same position.  
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Figure S1.  Experimentally accessible range of magnetic fields. We constructed this plot using 

data from various sources.[10–13] T is tesla. 
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Figure S2. Different shapes of commercial NdFeB permanent magnets. The black arrows in the 

Halbach array indicate the direction of the magnetization of the cube magnets, and the magnetic 

field underneath the array is stronger than the field above it.  NdFeB magnets may be obtained 

from different vendors (for example, kjmagnetics.com, magnet4less.com, and 

supermagnetman.com). 
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Figure S3. Axial MagLev (A, B) Schematic of an “axial” MagLev device (with north-poles-

facing) and a standard cuvette (45 mm in height) containing a paramagnetic medium and a 

sample. (C) The magnetic field visualized using Comsol simulation. (D) The strength of the 

magnetic field along the central axis of the “axial” MagLev device. (E) Density measurement of 

five materials levitated simultaneously in a solution of 3.0 M DyCl3. (F) Three types of particles 

with different densities (all ~40 m in diameter) suspended in an aqueous solution of 0.5 M 

MnCl2 were focused axially in the MagLev device, and separated into three populations. Within 

each population, the distribution of the particles along the z-axis represents the heterogeneity in 

density of these particles. Source: Images (A-E).[14] 
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Figure S4. Visualization of the magnetic fields surrounding magnets using numerical simulations 

in COMSOL®. Three exemplary arrangements of NdFeB magnets (25 mm  50 mm  50 mm) 

include (A) a single magnet, B) opposite-poles facing configuration, C) like-poles facing 

configuration.  
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Table S1. Common materials as density standards 

Water-insoluble materials as 

density standards 

Densitya 

(g/cm3) 

Polymers  

high-density polyethylene 0.97 

polydimethylsiloxane (PDMS) 1.04 

polystyrene 1.05 

poly(styrene-co-acrylonitrile) 1.08 

poly(styrene-co-methyl 

methacrylate) 

1.14 

nylon 6/6 1.14 

poly(methyl methacrylate) 1.18 

polycarbonate 1.22 

neoprene rubber 1.23 

polyethylene terephthalate (Mylar) 1.40 

polyvinylchloride (PVC) 1.40 

cellulose acetate 1.42 

polyoxymethylene (Delrin) 1.43 

polyvinylidene chloride (PVC) 1.70 

polytetrafluoroethylene (Teflon) 2.20 

  

Organic liquids  

toluene 0.865 

1,2,3,4-tetramethylbenzene 0.905 

methyl methacrylate  0.936 

4,N,N-trimethylaniline 0.937 

4-methylanisole 0.969 

anisole 0.993 

3-fluorotoluene 0.997 

2-fluorotoluene 1.004 
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fluorobenzene 1.025 

3-chlorotoluene 1.072 

chlorobenzene 1.107 

2,4-difluorotoluene 1.120 

2-nitrotoluene 1.163 

nitrobenzene 1.196 

1-chloro-2-fluorobenzene 1.244 

1,3-dichlorobenzene 1.288 

1,2-dichlorobenzene 1.305 

dichloromethane 1.325 

3-bromotoluene 1.410 

bromobenzene 1.491 

chloroform 1.492 

1,1,2-trichlorotrifluoroethane 1.575 

1-bromo-4-fluorobenzene 1.593 

hexafluorobenzene 1.612 

carbon tetrachloride 1.630 

tetradecafluorohexane 1.669 

2,5-dibromotoluene 1.895 

perfluoro(methyldecalin) 1.950 

1,2-dibromoethane 2.180 

iodomethane 2.280 

dibromomethane 2.477 

tribromomethane 2.891 

a The values of densities are obtained from sigma.com and reference[15]. 
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