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Figure S1. Fabrication of a silicone toroidal hydrostat. 
(a) Silicone pre-polymer is cast onto a rotating PVC pipe. (b) Once cured, the tube is rolled off and (c) inverted manually. (d) 
The inverted tube is then pressurized with water from a sink and tied off with a rubber band. (e) Adhesive is applied and the 
toroid is sealed off. (f) The string is untied, resulting in a pressurized toroidal hydrostat. 



 

 

 
Figure S2. Photograph of an air-filled toroidal hydrostat containing a Schrader valve. 
Shown with the valve facing outwards (left) and inwards (right).  
 
 



 

 

 
Figure S3. Measurements of coefficient of friction. 
(a) Computer rendering of experimental setup for measuring the coefficient of friction. A sled was attached to an Instron using 
a pulley system to apply a tangential load. (b) Load versus extension plots obtained from friction sled experiments. The force 
of friction was taken from the plateaued regions of the plots. (c) Plot of friction force versus normal force used to calculate the 
coefficient of friction via linear regression. (d) Plot showing relationship between the independently measured coefficient of 
friction (vertical red line) and the value obtained by using the coefficient of friction as a fitting parameter for our cylindrical 
gripping model (vertical dashed black line.) The shaded red region indicates the standard error from the linear regression to 
the friction sled measurements.  
 



 

 

 
Figure S4. Stress strain curve of thermoplastic elastomer membrane. 
Obtained from pull-testing (50 mm/min) a section of the elastomeric membrane from the commercially available ‘water wiggly.’ 
The elastic modulus was calculated by fitting a 10th-order polynomial to the entire curve and then taking the derivative at zero 
strain to obtain the linear fit shown by the dashed red line. Average value and standard deviation for the modulus were obtained 
from 7 independent experiments.  
 



 

 

 
Figure S5. (A) Images of the catching process obtained from a high-speed camera (Phantom V7.1). (B) A plot of position of 
the tip of the toroid versus time used to infer the acceleration of the process by fitting to a quadratic model. (C) A plot of velocity 
versus time obtained by numerical differentiation of the position versus time data. 
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Supplementary Notes 
 
Note S1. Derivation of Hydrostatic Gripping Model 
 
The toroidal hydrostat exerts a frictional gripping force.  Coulomb’s approximate model for dry friction states that: 
 

𝐹𝐶  ≤  𝜇𝐹𝑛  ,      eq. (S1) 
 
where 𝐹𝐶 is the fiction force, 𝜇 is the static coefficient of friction and 𝐹𝑛 is the normal force. For the case of a hydrostatic gripper: 
 

𝐹𝑛 = 𝑃𝐴𝑜 ,     eq. (S2)  
 
where P is the hydrostatic pressure and 𝐴𝑂 is the area of the object in contact with the hydrostat. Additionally, the 
incompressible nature of water in the hydrostat implies the following conservation of volume relation: 
 

 𝑉𝐻 =   𝑉𝐻0 +  𝑉𝑟 +  𝑉𝑜  ,     eq. (S3) 
 
where 𝑉𝑖 (for 𝑖 =  𝐻, 𝐻0, 𝑟, 𝑜) are the volumes of the hydrostat, the unperturbed hydrostat, the rod and the object respectively. 
For the case of a cylindrical rod and object (Figure 3a), equation (S3) produces the following relation: 
 

𝑅𝐻 =  √𝑅𝐻0
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2 ,     eq. (S4)  

 
where 𝑙𝑖, 𝑅𝑖 (for 𝑖 =  𝐻, 𝐻0, 𝑟, 𝑜) are the length and radius of the hydrostat, the unperturbed hydrostat, the rod, and the object 
respectively. The average circumferential strain in the membrane, 𝜀 can be approximated as: 
 

𝜀 ≈  
𝑅𝐻 −  𝑅𝑖  

𝑅𝑖
 .     eq. (S5) 

 
Where 𝑅𝑖 is the initial radius of the elastomeric tube before it has been pressurized and sealed off. Assuming a linear elastic 
response, the circumferential stress, 𝜎, in the membrane is: 
 

𝜎 = 𝐸𝜀 ,       eq. (S6) 
 
where 𝐸 is the tensile modulus of the membrane, which was measured to be 2 MPa. For a thin membrane in a cylindrical 
geometry, the circumferential stress can be related to the internal pressure by the Young-Laplace equation:  
 

𝑃 =  
𝜎𝑡

𝑅𝐻
 ,       eq. (S7) 

 
where 𝑡 is the thickness of the membrane in the stretched state. Assuming a Poisson’s ratio of 𝜈 = 0.5, 𝑡 is related to the 
undeformed thickness of membrane, 𝑡𝑜, by: 
 

𝑡

𝑡0
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,       eq. (S8) 

 
The dimensionless critical gripping force predicted from our model is obtained by combining equations S1-8 and can be written 
as:  
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Note S2. Fitting of Model to Experimental Data 
 

A 3x4 matrix was constructed to represent the experimentally measured critical gripping force, 𝐹𝑖𝑗
𝑒𝑥𝑝

,  as a two-dimensional 

function of the independent variables 𝑙𝑜/𝑙𝐻 and  𝑅𝑜/𝑅𝑖. Equation (S10) was fit to this dataset by finding the value of 𝜇 that 
minimized the following residual formula: 
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          eq. (S10) 

 
 

where 𝐹𝑖𝑗
𝑚𝑜𝑑𝑒𝑙(𝜇)  is the model prediction for a given value of  𝜇 , and 𝜎𝑖𝑗

2  is the variance matrix describing the uncertainty of 

the measurements. The results are displayed in Figure S3d.  


