Supplementary Material for #### An all-solid-state thin-layer laminated cell for calibration-free coulometric #### determination of K+ Shiho Tatsumi^a, Terumasa Omatsu^a, Kohji Maeda^b, Maral P.S. Mousavi^c, George M. Whitesides^{d,e,f}, Yumi Yoshida^{b,*} ^a Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan ^b Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan ^c Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles CA 90089, United States ^d Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States ^e Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, United States ^f Kavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street, Cambridge, MA 02138, United States Email address: yyoshida@kit.ac.jp #### 1. Conductmetric titration of the aqueous solution of tetraethylammonium chloride Figure S1 shows the results of conductometric titration of tetraethylammonium chloride (TEACl) with sodium tetraphenylborate (NaTPhB). TEA $^+$ forms a precipitate with TPhB $^-$ in the aqueous phase, and the resulting ionic composition of the aqueous phase alters the conductivity. A flexion point appeared upon the addition of \sim 18 cm 3 of the NaTPhB solution, which was an equivalent point. The titration was performed four times, and the correction factor of the TEACl aqueous solution was evaluated to be 0.901 \pm 0.01. **Fig. S1.** Conductometric titration of tetraethylammonium chloride (TEACl) with sodium tetraphenylborate (NaTPhB). The TEACl aqueous solution (1 mmol dm⁻³, 20 cm³) was titrated with an aqueous solution of 1 mmol dm⁻³ NaTPhB. # 2. Cyclic voltammetry for investigating the transfer of tetraethylammonium ions (TEA^+) in the thin-layer laminated cell Figure S2 shows the dependence of the peak current on the scan rate with respect to the transfer of TEA^+ in the thin-layer laminated cell. The peak current increased proportionally to $v^{1/2}$, indicating the control of the peak current by the diffusion of TEA^+ in the aqueous phase. The peak potentials varied in the 84–132 mV range, suggesting the existence of a small resistance in the peak current, which was attributed to solution resistance in the NPOE membrane and charge-transfer resistances at the boundary interfaces (Ag/AgCl-E, W–NPOE interface, PEDOT-PEG:TFPB/carbon-E). **Fig. S2.** Scan rate dependence of voltammograms corresponding to the transfer of TEA⁺ in the thin-layer cell. Scan rates of 5, 10, 20, 50, 100, and 200 mV s⁻¹ were employed. The sample was a $0.89~\text{mm}^3$ aqueous drop containing 50 μ mol dm⁻³ TEACl and 0.01~mol dm⁻³ MgCl₂. ### 2. Peak currents corresponding to the transfer of Na⁺ in the thin-layer laminated cell Figure S3 shows the peak currents acquired in the absence of K⁺. The peak current at -0.05 V was dependent on the concentration of Na⁺ in an aqueous solution (Fig. 9) and on the concentration of valinomycin (Fig. S3). Therefore, the peak currents could be attributed to the valinomycin-assisted transfer of Na⁺. **Fig. S3.** Voltammograms corresponding to the transfer of Na⁺ facilitated by various concentrations of valinomycin (0, 2, 5, and 10 mmol dm⁻³). Each sample was a 0.89 mm³ aqueous drop containing 10 mmol dm⁻³ NaCl. A scan rate of 20 mV s⁻¹ was employed.