Supplementary Material

for

An all-solid-state thin-layer laminated cell for calibration-free coulometric

determination of K+

Shiho Tatsumi^a, Terumasa Omatsu^a, Kohji Maeda^b, Maral P.S. Mousavi^c, George M. Whitesides^{d,e,f}, Yumi Yoshida^{b,*}

^a Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan

^b Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan

^c Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles CA 90089, United States

^d Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States

^e Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, United States

^f Kavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street,

Cambridge, MA 02138, United States

Email address: yyoshida@kit.ac.jp

1. Conductmetric titration of the aqueous solution of tetraethylammonium chloride

Figure S1 shows the results of conductometric titration of tetraethylammonium chloride (TEACl) with sodium tetraphenylborate (NaTPhB). TEA $^+$ forms a precipitate with TPhB $^-$ in the aqueous phase, and the resulting ionic composition of the aqueous phase alters the conductivity. A flexion point appeared upon the addition of \sim 18 cm 3 of the NaTPhB solution, which was an equivalent point. The titration was performed four times, and the correction factor of the TEACl aqueous solution was evaluated to be 0.901 \pm 0.01.

Fig. S1. Conductometric titration of tetraethylammonium chloride (TEACl) with sodium tetraphenylborate (NaTPhB). The TEACl aqueous solution (1 mmol dm⁻³, 20 cm³) was titrated with an aqueous solution of 1 mmol dm⁻³ NaTPhB.

2. Cyclic voltammetry for investigating the transfer of tetraethylammonium ions (TEA^+) in the thin-layer laminated cell

Figure S2 shows the dependence of the peak current on the scan rate with respect to the transfer of TEA^+ in the thin-layer laminated cell. The peak current increased proportionally to $v^{1/2}$, indicating the control of the peak current by the diffusion of TEA^+ in the aqueous phase. The peak potentials varied in the 84–132 mV range, suggesting the existence of a small resistance in the peak current, which was attributed to solution resistance in the NPOE membrane and charge-transfer resistances at the boundary interfaces (Ag/AgCl-E, W–NPOE interface, PEDOT-PEG:TFPB/carbon-E).

Fig. S2. Scan rate dependence of voltammograms corresponding to the transfer of TEA⁺ in the thin-layer cell. Scan rates of 5, 10, 20, 50, 100, and 200 mV s⁻¹ were employed. The sample was a $0.89~\text{mm}^3$ aqueous drop containing 50 μ mol dm⁻³ TEACl and 0.01~mol dm⁻³ MgCl₂.

2. Peak currents corresponding to the transfer of Na⁺ in the thin-layer laminated cell

Figure S3 shows the peak currents acquired in the absence of K⁺. The peak current at -0.05 V was dependent on the concentration of Na⁺ in an aqueous solution (Fig. 9) and on the concentration of valinomycin (Fig. S3). Therefore, the peak currents could be attributed to the valinomycin-assisted transfer of Na⁺.

Fig. S3. Voltammograms corresponding to the transfer of Na⁺ facilitated by various concentrations of valinomycin (0, 2, 5, and 10 mmol dm⁻³). Each sample was a 0.89 mm³

aqueous drop containing 10 mmol dm⁻³ NaCl. A scan rate of 20 mV s⁻¹ was employed.