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Wettability is a property of surfaces that is both theoretically
and practical ly important.2 We3 and othersa have shown qual-
i tat ively that the wettabi l i ty of a sol id is determined by the
structure of its outermost few angstroms. A more quantitative
knowledge of the influence on wetting of the depth of functional
groups beneath the surface would be invaluable in understanding
the intermolecular forces acting at interfaces.5 Here we correlate
the wettability oi ordered monolayers of <.r-mercapto ethers
(HS(CH2)r6O(CH2) ,CH3;  n  = 0-5)6 adsorbed on go ld  wi th  the
depth of the polar ether functional group below the solid-liquid
interface. Long-chain alkanethiols adsorb from solution onto gold
surfaces and form monolayer films in which the hydrocarbon
chains are densely packed, al l- trans, and t i l ted about 30o from
the normal to the surface.T'e Assuming a similar structure for
monolayers formed from mercapto ethers (Figure 1), variat ion
in the chain length, r,  of the terminal alkyl group provides ang-
strom-scale control over the posit ion of the polar ether group
beneath the surface.

X-ray photoelectron spectroscopy (XPS) and external reflection
infrared spectroscopy of these monolayers confirmed their com-
posit ion. The C-H stretching modes in the infrared indicated

crystal l ine packing in both the polymethylene backbones and the
termina l  O-a lkv l  cha ins.8  Prosress ive a t tenuat ion o f  the O(  ls )
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Figure l .  A schemat ic i l lustrat ion of  a monolayer of  HS(CH2),60-
(CH2),CH3 on gold.
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dispersion interactions, is largely screened from the influence of
the ether oxygen by a single methyl group and completely screened
(to within experimental precision) by an ethyl group. Water,
which interacts primarily by hydrogen bonding, senses the ether
group at greater depths; limiting contact angles are only reached
for the butyl ether. Clearly, water cannot form hydrogen bonds
through 4 A of hydrocarbon. I t  is more l ikely that the water

molecules are able to penetrate through the terminal alkyl chains,
possibly by disordering the outermost part of the monolayer.
Water-hydrocarbon contacts are, however, energetical ly unfa-
vorable and beyond a certain depth the energy ofa hydrogen bond
to an ether no longer compensates for the concomitant hydrophobic
interactions. Glycerol not only forms strong hydrogen bonds but
also has considerable dispersive character.l2 The contact angles
of glycerol reach a plateau at the propyl ether: at this point the
glycerol molecules are beyond the range of significant dispersive
interactions with the ether functional i ty but are perhaps too
sterical ly hindered to penetrate through the terminal alkyl chain
to form hydrogen bonds to the oxygen atom of the ether.13

In conclusion, the sensitivity of the contact angle of hexadecane
to the ether group in this monolayer system extends only -2 A,
whereas water senses the ether group down to - 5 A beneath the
surface. The greater sensing depth of water may ref lect i ts
penetrat ion through short alkyl chains at the surface of the
monolayer.
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Figure 2. Advancing contact angles of water (O), glycerol (O), and
hexadecane (r) on monolayers of HS(CH2)r6O(CH2)"CH3 on gold, as
a function of the length of the terminal alkyl chain. PEG (poly(ethylene
glycol)) is a model for a surface in which the ether linkage is exposed to
the contacting l iquid. A monolayer of docosanethiol (HS(CH2)2rCH3)
on gold models the case in which the oxygen of the ether has no influence
on the contact angle. Errors in measurement are within the size of the
data points. The value of the contact angle of water on PEG is ap-
proximate since PEG rapidly dissolves in the water drop.

peak in XPS with increasing chain length of the alkyl group
supported our proposed structural model.

We measured the advancing contact angle, d", of water, glycerol,
and hexadecane on the monolayers as the ether group was pro-
gressively screened from the contacting liquid by alkyl chains of
increasing length.e Figure 2 relates cos 0" to the length of the
terminal alkyl chain. A smooth poly(ethylene glycol) (PEG)
surfacel0 provided a reference for a surface in which ether linkages
are exposed to the contacting l iquids.rr

We note two features of Figure 2. First, for sufficiently long
terminal alkyl chains, the contact angles approach those observed
on monolayers of simple n-alkanethiols adsorbed on gold. Thus,
the influence on wettability of the ether oxygen disappears entirely.
Second, the length of the alkyl chain for which the ether group
no longer inf luences the contact angle varies with the nature of
the contacting l iquid. Hexadecane, which interacts only by
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