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Effective molarities for diffusion-controlled reactions between spherical reactants with reactive patches are calculated analytically
and by Brownian dynamics simulations. Unimolecular reaction systems with internal translational motion in one, two, and
three dimensions are investigated and compared with bimolecular reactions in three dimensions. Rotational diffusion is included
in all cases in which a reactant particle is anisotropically reactive. Effective molarit ies are established by calculating the
ratio kunif k61. Large rate enhancements are seen when restrictive translational constraints are imposed on the unimolecular
reaction. Additional rate enhancements occur when a reduction in dimensionality accompanies the translational constraint.
If the reactants are anisotropically reactive, the effective molarity is further increased if the geometric constraints in the
unimolecular system keep the reactive surfaces in a proper orientation for reaction. The presence of an attractive potential
designed to represent the relief of strain in the unimolecular system also leads to rate enhancements. The results are compared
with those obtained for simple models of activated (non-diffusion-controlled) reactions. Overall, these simulation results
indicate that highly elevated values of effective molarity are not likely to arise from mass transport considerations alone.

Introduction

In  many chemica l  systems.  a  ra te  enhancement  is  seen * 'hen
an intramolecular reaction replaces i ts intermolecular analogue.
that is, when the two reactive species are part of the same molecule
rather than separate molecules or atoms. Of course, any such
comparison between different reactions assumes that the two
reactions proceed through the same transition state. A quantity
has been defined to measure this rate enhancement, namely, the
effect ive molari ty (EM). This is defined as the rat io of the
intramolecular rate constant to the intermolecular rate constant.l'2

Consider the rate equation for an elementary bimolecular re-
action:

A + B * p r o d u c t s

The relat ive rate of disappearance of A is
- d l A l  I

:  =  L . i [ B ]  ( 2 )
dr tA l

In the elementary unimolecular reaction

A * products (3)

the relat ive rate of disappearance of A is
-d tAl I

dt ln1 
= kuni (4)

The concentration of reactant B necessarv for the two relative
rates to be equal

kui[B] = kuni (5)

is the effect ive molari tv of the unimolecular reaction:

[B]  =  k ,n i /ka i=  EM (6)

The range of effective molarities seen in experiments extends
f rom less than  I  M tog rea te r t han  108M.2  Anumbero f  t heo -
retical models have been advanced to rationalize the observed
EMs.3 Different theories have attributed high effective molarities

Mandolini, L. Adu. Phys. Org. Chem.1986, 22,l.
Kirby, A. J. Adu. Phys. Org. Chem.1980, /7, 183.
Menger, F. M. Acc. Chem. Res. 1985, 18, 128.

to  prox in t i t l .  s te  r ic .  or  s t ra in  e f fec ts .  Depending on the theory
and the par t icu lar  s)s tem under  s tudy.  maximum rate  enhance-
ments  ranging f rom 5 M to  greater  than 108 M have been pre-
d ic ted.2-5

In the present work, we explore the variat ion in EM obtained
for simple theoretical models in which both the intermolecular
and intramolecular reactions are dif fusion control led. In these
models, the reactants are spherical part icles that are al lowed to
diffuse in either an unbounded or a bounded region of space so
as to simulate a bimolecular reaction or a unimolecular reaction,
respectively. The particles have reactive patches on their surfaces.
A collision between the diffusing particles results in a reaction
if the two reactive surfaces come into contact; otherwise, the
particles reflect and diffuse apart. The model systems are chosen
to allow us to explore how variations in the flexibility of the linking
group influence the intramolecular reaction rate and corresponding
effective molarity. The contribution to the effective molarity due
to rotat ional mobil i ty is also studied. Final ly, the effects of an
attractive potential intended to represent steric effects in the
unimolecular system are also investigated.

One major objective of the work is to inquire if (or under what
circumstances) very large values of EM can be attributed entirely
to proximity (that is, to a favorable configurational entropy re-
flecting the restriction in relative position and orientation of the
reactants in space to regions favoring reaction) and to what extent
enthalpic terms must be considered. Restricting the treatment
to diffusion-controlled reactions does not limit its scope in con-
siderations of entropy. Thus this treatment provides an accurate
(within the l imits of the analysis) discussion of the maximum
contribution to EM from proximity. Its conclusion-that prox-
imity alone cannot account for values of EM larger than ap-
proximately 103-104 M-is not an art i fact of a treatment con-
sidering only diffusion-controlled reactions.

Theory

Model System. The reactant particles in this work are spheres
of l-A diameter. This size was chosen arbitrarily;with appropriate

(4) Dafforn, A.; Koshland, D. E. Proc. Natl. Acad. Sci. U.S.A. 1971,68,
2463.

(5) Bruice, T. C.; Pandit,  U. K. J. Am. Chem. Soc. 1960,82,5858.

( l )

( l )
(2)
(3)
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Figure l. Model of reactive spheres of radius r with reactive patch angle
of d around the symmetry axis vector B.

scaling, the results presented here are generally applicable. The
spheres can either be uniformly reactive or can possess an axialll '
symmetric reactive zone. The angular size of the reactive patch
measured from its axis of symmetry is denoted b.v- 0 (see Figure
l). The two reaction partners diffuse in a liquid with the r.isco:rrr
o f  water  a t  300 K,  There are no forces of  in teract ion betueen
the react ive par t ic les  in  most  o f  the ca lcu la t ions.  In  one ca lcu-
lation, a harmonic interparticle potential is used to model the relief
o f  s t ra in  upon react ion in  a  un imolecu lar  system.2 In  a l l  ca lcu-
lat ions, hydrodynamic interactions are ignored.

The bimolecular reaction

A + B - A B  ( 7 )

occurs instantly when the two particles, diffusing in an infinite
domain, col l ide on their reactive surfaces at a center-to-center
separation a = I A. The unimolecular reaction

is identical with the bimolecular reaction except that the two
spheres are connected by a f lexible chain or tether. There is
therefore a maximum center-to-center separation R, which we
take to be l0 A in most of these discussions (changes in the length
of the tether are treated explicitly in the last section of the paper).

Three different types of molecular connectors will be considered
for the unimolecular case. The most flexible connector allows
the reactive spheres to move freely relative to each other in three
dimensions. Two less f lexible connectors al low relat ive motion
in only two or one dimension; these connectors are idealized models
for molecules in which reactive groups are attached to semirigid
frames.

Calculating k61. Northrup et al. have developed and extended
a method for calculat ing the rate of a bimolecular dif fusion-
control led reaction via Brownian dynamics trajectory simula-
t ions.6'7 The simulat ion is performed in a bounded domain and
then corrected for the infinite domain of the physical system. The
formalism of Northrup et al.  is general and can account for
interparticle forces and for hydrodynamic interactions, although
the latter are not included in the numerical evaluations of EMs
in the present work.

The modelsystem for the bimolecular reaction is one in which
one member of the reacting pair (A) is centered at the origin and
the other (B) is allowed to diffuse with a relative diffusion consranr
equal to the sum of the individual dif fusion constants:

D,"t = D^ + DB (9)

We use a treatment based on the fol lowing simple model. The

(6)  Northrup,  S.  H. ;  Al l ison,  S.
1 9 8 4 . 8 0 .  1 5 1 7 .

(7) All ison, S. A,; Northrup, S.
198s, 8J. 2849.

\ t . i z ' ' :  e : : .

space  a round  A  i s  d i v i ded  i n to  l u t r . cs i . r n :  F r r r  r . i j ue r  t r i : he
in te rpa r t i c l e  cen te r - t o - cen te r  sepa r t t l gp  r  )  A .  *  e  . i r : ume  :h ; t
the in terpar t ic le  potent ia l  u( r )  =  0 .  Thus.  the r . l re  ce. r :1 : t . l r l  t . ) r
dif fusing B part icles to arr ive at r = b is grren br . i  srmple;nalr lrc
express ion (see be low) .  The subsequent  fa tes t r i  B pa: : rc lc :  :har
have reached r = b is determined by Brownian drnamru\ lr.ler-lor\
calculat ions. This al lows for the computation of re.rc:r. .n irr ,rb-
abilities when the geometric requirements for reaction dr) nor admrt
analyt ic calculat ion. Any trajectory is terminated either br i-e-
action (when B col l ides with A at r = a and the reactir .e Darches
of A and B are properly oriented for reaction) or by truncal ion
(when the B part icle moves to a distance r = q, where q > hl.
As is described below in greater detai l ,  the overal l  bimolecular
rate constant k6; is a simple function of the rate constant i(D(b)
for arrival at r = b, the probability B of subsequent reaction rather
than truncation, and a factor O that corrects for the fact that the
truncated trajectories, had they been continued, might have led
to reaction rather than escape of the reactants to inf ini te sepa-
ra t ion.

The bas ic  re la t ion used to  ca lcu la te  t6 i  is6 , .

A o  =  A o r b ) p  ( 1 0 )

Hc ' re .  l , , t h t  r .  l hc  i . r l c  C r ' r t r l . t n l  i , . r  l hc  t , r no lecu le r  r eac t ron' c ' " * - t $ccn  
t hc  c : i : ' r . . i nS  r . r : l i c i c . r nd . i :  t : r - r t l r ) o tC ; l l r  r e : c t i r e  t a rge t

t r i  r l t d r u .  h  T h : ' : . , : c  a , \ : t \ : . 1  : :  : .  ! t \ c ' r  b r  l l . , ' S n t r i u c h o r r s k i
c- \p fCrr i r - r |1 '

A , , r n l  = 4 ; [ ) . . 1  r l l )

T h e  q u a n t i t l  p  i :  t h c  p r o b a b r l r r r  t h . r i . i  p a n r c l e : h : : : r ; r r :  a r  b
wil l  eventualh react rather than dif fusc- to inf ini tc- :ei\ l :-atrtrn This
quan t i t y  i s  ca l cu la ted  i nd i rec t l l  b1  ca r r r i ng  ou r  B roun ran  d r -
namics s imulat ions o f  reactant  B in  a  f in i te  reg ion around rhe
target A. A truncation sphere is establ ished belond b ir  r  = q.
When a par t ic le  reachei  q  i ts  t ra jec tor )  is  terminarcd.  The
probabil i ty that a part icle that starts at b u' i l l  reacr rarher rhan
diffuse to r = q^is termed 0. tn our calculations. b and q are raken
to be 4 and l0 A, respectively. The prolabiliti 'p can be erpressed
in terms of the computed probabil i ty 0 byu

p  =  f J / ( l  -  ( l  -  0 lo l  (n )

The quantity O is the probability that a particle at q in an infinire
domain wil l return to r = b rather than diffuse to infinite seDa-
ration. It can be expressed analytically ase

( 8 )A  B * A B
\-/ \-/

(  l 3 )

which for systems without interparticle forces (u(r) = 0) integrates
to

I  =  h / q

e=ko(btf,-a,lryXl

,. - 4rDr"1bP
" b i  

-  
l l ( l  _ B ) 0

(  l 4 )

In summary. the rate constant for bimolecular reactions of
part icles with perfect lv reactive patches but that have no inter-
part icle or hydrodynamic interactions is6

( l s )

A.; McCammon, J.

H.;  McCammon, J.

A. J. Chem. Phys.

A. J. Chem. Phys.

B is calculated by determining the ensemble probabil i ty that a
part icle start ing at a random point on surface b (4 L\ wi l l  react
with a second part icle anchored at the origin rather than dif fuse
to  su r face  q  (10  A ) .

Calculating kun. General Systems, uia Computer Simulation.
The rate constant for a unimolecular reaction is the reciprocal
of the average reaction t ime (or mean f irst passage t ime) r. t0-t2

(8) Smoluchowski, M. Y. Phys. Z. 1916, 17, 551.
(9 )  Nor th rup ,  S .  H . ;  Hynes ,  J .T .  J .  Chem.  Ph1 ,s .  1919 .71 ,811 .
(10) Szabo, A. ;Schul ten,  K. ;Schul ten,  Z.  J.  Chem. Plrys.  1980, 72.4350.
( l  l )  We iss ,  G .  H .  Adu .  Chem.  Phys .1967 .  t3 ,  t .
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In  our  model .  r  w i l l  be ca lcu la ted in  the var ious un imolecu lar
systems discussed above bv determining the ensemble average time
necessary' for a part icle start ing at a random point within the
diffusion region (al l  points greater than I A from the origin and
less than l0 A from the origin) to react with a part icle located
at the origin. Al l  attempts to dif fuse to a separation greater than
10 A are ref lected back into the dif fusing region to continue the
t ra jectorv  unt i l  react ion occurs .

I sotropical lt' Reactite Spheres, uia Analytical Formulation.
For the case of uniformly reactive spheres, the unimolecular
dif fusion-control led reaction rate can be obtained analyt ical ly as
the inverse of a mean first passage time. These times have been
obtained by Adam and Delbruck using series solutions,l2 in closed
form by Szabo et al.  using operator methods,l0 and by Deutch
using direct integration.l3 Here, we give a straightforward de-
rivation using Laplace transforms.

The rate of change of the distribution function of the trapped
particle, P(r,t), can be expressed in terms of the diffusion equation

}P(r,t)  /  0t = DV.[VP(r,/)  * B$ u(r))P(r,t)) (  l6)

where D is the diffusion constant, a(r) is the potential felt by the
part icle, and B is the reciprocal of the product of Boltzmann's
constant and absolute temperature. The boundary condit ion at
the reflective surface R is

-DlV P(r,t) + B(Va( r))P(r,t)1,=R = 0 (  l 7 )

This is equivalent to the particle flux at R being zero. The
boundary condition at the reactive surface a is

P(r , t ) ,=o = 0 (  l 8 )

The in i t ia l  d is t r ibut ion P(r . t=0)  is  I , ' r .  where t / is  the vo lume o l
the system.

The d i f ius ion equat ion is  s impl i f ied by tak ing the Laplace
t ransform

zP0,z)  -  l ' t  =  DV. IYP(r ,z)  I  B(Vu(r \PQ,z) ]  (19)

where

Pe,z\ = f-s- ' tp1r,t) dt
e r O

The mean first passage time r can be expressed as

[ t - -  f  P  ^

,  = 
Jo dt J dr P(r,t)  = 

J d. P(r.z)1,=s (20)

where the integration over t ime is included in the Laplace
transform of P(r,t)  with z = 0.

Inser t ing P(r3=0)  in to  eq l9  y ie lds
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- ' ]  e4 )
A ;  n R

'd= 7hJ" d '

!= ' ,  , ,=fu:Lt
3D

' fd=2 "=ffi lt"" t-Jt'+

]  
, , , ,

n .  =  
k " T

"  t  6q@ /2)

The absolute temperature, 7", is 300 K and the solvent viscosity,

4, is I cP. The particle diameter, d, is I A for both the target
and thediffusing part icle. The t ime step, A/, is 5.69 fs and was
arrived at through system parameters:

I
\ r  -  -- ' -  

l o o

l-t e-pu(n f a' d* r,r,f#

where At  =  l ,  A2 = 2r ,  and A3 = 4n.
When u(r) = 0, eq 24 can be integrated analyt ical ly. Ex-

pressions for the mean f irst passage t imes with no interpart icle
forces are given in eqs 25-27, where ̂ y = Rla.

(2s)

,-hl ,'u,
516  -  9 t t  *  5y ' -  l

u - - l

l 5 ( - y 3  -  l )

Computational \ Iethods

Brownian Dynantics. Translational Motion The stochastic
translational motion of the diffusing particle is simulated by using
the algori thm of Ermak and McCammon.ra The displacement
of the particle along each Cartesian axis is given by an equation
of the form

x ( t + A t ; = x ( l ) + S (28)

where At is the dynamics t ime step. S is a Gaussian random
number  wi th  a  mean of  zero and a var iance

(S: ;  =  2D,r tJ t (2e)

u hich mathematical l l '  represents the stochastic forces imparted
to the par t ic le  by the so lvent .  The random numbers S are gen-
erated for  the s imulat ion by the IMSL L ibrary  ccNML subrou-
tine.r5 As stated above. the relative diffusion constant is the sum
of the individual diffusion constants, which can be calculated by
the Stokes-Einstein law of diffusion:

,,=fl

(30)

- l

VD
= *t, f t'[$ 

"t'''=ol
where d is  the d imensional i ty  o f  the system.

Integration and application of the boundary condition at

dP ( r , z=0 )  d  ^- ;  +  ̂ j ( ;  ue)pv.z=o) = #[  #, ]
The left-hand side of eq 22 is equal to

A
,-lu(r) L r7ar) p1r,z=0)

A second integration yields

P(r.:=o; = -J-r-a^'t f"'dx ,u^ol# r 
l

. ,(* ,r,r)rr,,,=or](2t )

R yield

(22)

(23)

( a  /  2 ) 2

2Dr"t
( 3  1 )

( 3 3 )

(34)

It represents one-hundredth of the time step necessary for the
variance of S to be the square of the particle radius.

Rotational Diffusion. The equation of motion for the direction
vector representing the axis of symmetry of the reactive patch is

B(t + Atn; = B(l).M,.Mr.M, (32)

where M' Mr,, and M, are rotation matrices corresponding to
rotation around the x, y, and z axes by random angles d1, d2, dr,d
c.3. The average of a; is zero and the variance is

(a i z )  =  2ARAIR

where ,R is the Stokes' law rotational diffusion constant

D R =  
o " '  

=
Srr t@/2)J

Application of eq 20 gives a general expression for the mean first
passage t ime:

The random numbers a; &re generated by the IMSL Library
ccNuL.ls The t ime step for rotat ion, AtR, is l0 t imes as large
as A/, the time step for translation, but rotations are performed

(12) Adam, G.;  Delbruck,  M
ology; Rich, A., Davidson, N.,
l  98-2 l  5.

(13) Deutch,  J.  M. J.  Chem.

. Structural Chemistry and Molecular Bi-
Eds.; Freeman: San Francisco, 1968; pp

Piys.  1980, 78,4700.
(14) Ermak, D. L.; McCammon, J. A. "f. Chem. Phys. 1978,69,1352.
(15) IMSL Library Edi t ion 9.2 ( IMSL LIB-0009, Houston,  TX 1984).
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once every l0 translat ional steps.
Time-Step Variation. To save computation time, the time step,

and thus the variance of the random number in the equation of
motion, was varied according to the posit ion of the dif fusing
part icle relat ive to the target. [n the bimolecular system with a
reactive surface at a (r = I A) and a truncation surface at q (r
= l0 A), the intervening region was divided into seven shel ls of
equal width. The two zones closest to the target had t ime-step
values as stated above, the third zone had a t ime step l0 t imes
larger, and the remaining four zones had time step 20 times larger
than the minimum value. In all cases the rotational time step was
l0 t imes the translat ional t ime step. The trajectory init iat ion
surface b (r = 4 A) was inside of the third zone.

In the unimolecular system, the region between the reaction
surface at a (r = I A) and the reflective surface (r = l0 A) was
also divided into seven regions, with the regional time steps sym-
metric about zone 4. Zones I and 7 had the minimum time step
as calculated above, and zones 2 and 6 had t ime steps l0 t imes
larger. The time steps for zones 3 and 5 were 25 times larger than
the minimum, and that for zone4 was 50 t imes larser than the
min imum.

These part icular t ime-step distr ibutions were experimental lr
arr ived at so as to reproduce the results of a uniform t ime-step
distr ibution corresponding to the minimum value throughout the
in terva l .  The va lues used in  a l l  cases were der ived f rom the
three-d imensional  systems that  were the most  sens i t ive  to  the
t ime-step d is t r ibut ion.

Boundary Conditions. Starting Positions. In the calculation
of the bimolecular rate constant, the diffusing particle was started
at random locations on the surface b (4 L\. The simulation used
the IMSL Library cGSpHr5 subroutine for this purpose.

In the calculat ion of the unimolecular rate constant, the dif-
fusing part icle was started at random locations in the dif fusion
region by using IMSL Library ccuBFS.r5 This results in an
ensemble average uniform distr ibution of start ing posit ions, as
required in calculat ions of mean f irst passage t imes.l0

Reaction. In both the unimolecular and bimolecular models,
reaction occurs on contact between the reactive port ions of the
part icles. Computational ly, three cri teria must be met. First,
the center-to-center displacement must be less than or equal to
the sum of the radii of the particles. If the target is anisotropically
reactive, a puncture point is calculated. This point is defined as
the point on the target surface that the diffusing molecule would
have passed through i f  a straight l ine between the last point on
the trajectory and the present point were assumed. The second
requirement for reaction is that the angle of the puncture point
relat ive to the symmetry axis of the target must be less than or
equal to d, the angle that defines the target's reactive patch. The
third criterion is evaluated if the diffusing particle has anisotropic
reactivi ty. The l ine from the center of the target to the center
of the diffusing molecule, if it were touching at the puncture point,
is calculated; the angle between this l ine and the symmetry axis
of the diffusing particle's reactive patch must be less than or equal
to the angle 0., that defines the reactive patch on the diffusing
part icle.

when the conditions for reaction are achieved in the bimolecular
case, the counters corresponding to the number of reactions and
the number of runs (NRXN and NRUN, respectively) are both

!19r9m9nted by L The probabil i ty p is calculated as NRXN/
NRUN when NRUN is  equal  to  4000.

In the unimolecular simulations, the reaction time /*., for a given
run is t + Lt,where I was the lifetime of the reactants on the last
step prior to reaction. The mean first passage time is then simply
the ensemble average of the reaction t imes.

Reflect ion In the calculat ion of the probabil i ty B in the bi-
molecular simulation, the diffusing molecule may attempt a step
through a reflective boundary on the anisotropic particle. If thii
occurs, the position at t + At is equated with the position at t and,
a new Brownian step is performed. The unimolecular model treats
reflection in a similar manner, both for collisions of the reacrants
and for displacements of the reactants beyond the allowed max-
imum (10 A). The position at r + Ar is equated with the position

Mazor et al.

TABLE I: Effective Molarities (M) for Different Combinations of
Unimolecular Reactions (Columns) and Bimolecular Reactions
(Rows)o'D

unimolecular  react ions

3D '  3D  3D  3D
- l D  9 0 : 1 8 0  4 5 : 1 8 0  3 0 : 1 8 0  3 0 : 3 0

3 D  5 . 1 -  l 6 r
3 D
9 0 : 1 8 0  6 . 8 - i  l . l 6
3 D
4 5 : 1 8 0  1 3 . 8 2  4 . 1 6
3D
3 0 : 1 8 0  2 2 . 8 1  7  . 1 9
3 D
30 :30  208 .1  65 .62 l - r 6  6 0 6  1 " 6  0 . 3 5 6

o  These  resu l t s  a re  based  on  compute r  s rmu la t rons  The  reac t ion
d is tance  a  =  |  A  and  the  re f l ec t i on  d i s rance  R  =  l0  A  in  a l l  cases .
6The  uncer ta in t i es  range  f ron t  4c ,  to  l 0?  * i rh  rhe  a re rage  be rng  6%.
These  a re  ob ta ined  bv  p ropaga t ing  the  s tandard  de r ia t i on  o l  t he  mean
unrmo lccu la r  and  b imo lccu la r  ra te  cons ran ts  f rom e rgh t  ba rches  o f  500
t ra lec to r ies  eech .  '  Reac t rvc  pa tch  on  ta rge t  ( t i  i n  degrees ) : reac t i ve
p a t c h  o n  d i i f ' u s r n g  p a r t i c l e  t d .  t n  d e s r e e r ) .

0 . 0  0 . 2  0 . 4  0 . 8  0 . 8  1 . 0

Patch Size (9/r)

Figure 2. Effect of target reactive patch size d on bimolecular rate
constant. f t* is the bimolecular rate constant divided by the Smolu-
chowski result (4a-D,.1a), where a is the sum of the radi i .  The sol id l ine
corresponds to the analytical results of Shoup et al.r6 Points correspond
to the simulation results. Crosses corrrespond to the error range obtained
by propagating the standard deviation of the mean bimolecular rate
constants from eight batches of 500 trajectories each.

at t ,  At is added to the l i fet ime of the reactant. and the Brownian
dynamics trajectory is resumed.

Truncation In the bimolecular simulat ion, trajectories are
truncated when the interpart icle separation is greater than q (10
A;. fne value of NRUN is then inbrementeA wnite the valu-e for
NRXN remains the same,  and a new t ra iectorv  is  s tar ted.

Results and Discussion

Unimolecular rate constants were calculated for one-, two- and
three-dimensional systems in which both particles were isotrop-
ically reactive (that is, the reactive patch size is 360o). In addition,
in the three-dimensional systems the target particle was assigned
three dif ferent reactive patch sizes: 90,45, and 30o. One ad-
ditional case was investigated, that in which both the target and
diffusing molecule had a 30o reactive patch. The same systems
were also investigated in the bimolecular case, which allowed us
to evaluate the effects of spatial constraint on each system. The
results can be found in Table L

Shoup and Szabor6 derived an approximate analytical expression
for the rate constant of a bimolecular reaction when one of the

b imo lecu la r
react  lons ] Dil)

0 . 4 r 0

0  6 :_1  0  { { x

L l 6  0 9 0 . 1  0 1 0 :

2 . 0 8  I  J q  0  6 6 {  0 . 1 1  I

I

(16) Shoup, D. ;  L ipar i ,  G. ;  Szabo, A.  Biophys. , / .  1981, 36,69i .
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TABLE II: Effective Molarities (M) for Uniformly Reactive Sphereso
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reactant dimens EM rel EM

tDl2D lDl3D 2Dl3DpD R - a Rla 3 DI D

0.5
0.5
0.s
1 . 0
1 . 0
1 . 0
2.0
2.0
2.0

2 .5
1 . 2 5
0.5  5

10.0
2 .5
t . 2 5
5.0
4.0
2 .25

2 .0
0.75
0.05
9.0
r . 5
0.25
3.0
2.0
0.25

5.0
2 .5
l . l

1 0 . 1
2 .5
1 . 2 5
2 .5
2.0
| . 1 2

2 . r9
1 . 5 9
1 .05
2.92
l . 5 9
1 . t 2
1 . 5 8
1 .42
1 .06

5 . 1 0
2 .s5
l . l 0

1 0 . 1
2 .55
r .25
2 .55
2.03
r . t 2

2.32
1 .60
1 .05
3.47
1 .60
1 . 1 2
L60
1 .43
1 .06

198
1 4 1 0

3 l 7000
4.89

176
6340

22.0
49.5

3 1 7 0

90.3
888

302000
1.6- l

l l l
5670

1 3 . 9
34.9

2990

38 .8
554

288000
0.482

69.2
5060

8.65
24.4

2820

oThe bimolecular reactions are all in three dimensions. and the unimolecular reactions arc in one, two, or three dimcnsions. These results are bascd
on analytical formulas, i.e.. the unimolecular rate constants (in units of s-l) are reciprocals of the mean first passage times given.in eqs 25-27. and
the bimole-cular rate constants are given b! the familiar Smoluchowski equation3 (in units of M I s-r). 'd = reaction distance (A), R = reflection
distanc€ (A).

species is anisotropically reactive. Comparing the rate constants
for the bimolecular simulat ions with their results reveals close
agreement (see Figure 2).

The effective molarity in systems where the unimolecular re-
action is exactly the same as the bimolecular reaction except for
the translational constraint is seen to be less than I for all cases
(see Table I).  This result indicates that proximity alone is not
solely responsible for the rate enhancements seen in the unimo-
lecular reactions.3' l  7

The maximum effective molarity in the absence of interparticle
potentials occurs when the three-dimensional bimolecular reaction
is between particles with relatively small reactive regions, and the
corresponding unimolecular reaction is between reactive groups
that are pointed toward each other with al l  motion confined to
the l ine separating the two groups.

When the reactive species are isotropically reactive, effective
molari t ies can be calculated analyt ical ly. Using the formalism
outlined above, the rate constants for the unimolecular reactions
can be calculated. An interesting result that is immediately
apparent is that, because ftun; and hp;are both inversely proportional
to the diffusion constant, the effective molarity is independent of
the viscosity. The effective molarities calculated analytically are
in good agreement with those obtained from the simulat ions
(compare Table I row 1 with Table II row 4). Analytic effective
molari t ies for a wider variety of isotropical ly reactive systems
without interparticle forces are compared in Table II. In this table,
a is the reaction distance and R is the ref lect ion distance. In al l
cases, the bimolecular rate constant is the Smoluchowski result,
k6i = 4rDr.14 for diffusion in three dimensions.

Three general effects can be discerned from the data. First,
as the value of R - a decreases, corresponding to restr ict ing the
reactive species to a smaller and smaller region, the effect ive
molari ty increases dramatical ly. Using the analyt ic formulas in
eqs 25-27 one can obtain expressions for the limiting behavior
of the effective molarity. For example, for the three-dimensional
bimolecular reaction and one-dimensional unimolecular reaction,
kun; ?nd the effect ive molari ty approach inf inity as (R - a)-2 as
R approaches a. Second, as the ratio Rf a of the reflective distance
to the reactive distance goes from )) l  to =1, the increases seen
in reducing the dimensional i ty of the unimolecular system drop
markedly, In three dimensions, the dif fusing part icle is nearly
restricted to the surface of the target particle when R/a = l. In
this case. the diffusing particle will react before it has been able
to move an appreciable distance over this surface. The effective
motion is essential ly one-dimensional, which explains the con-
vergence of the effective molarities for different dimensionalities
of unimolecular motion as Rf a .* l .  Also of interest is the fact
that the rate increase in reducing the dimensional i ty by I unit
is similar regardless of whether one starts in three or two di-
mensions.

When an attract ive interpart icle potential is appl ied in the
unimolecular case, the effective molarities increase dramatically,

(17) Menger,  F.  M.;  Venkataram, U. V.  J.  Am. Chem. Soc.19t5,  107,
4't06.

TABLE III: Effective Molarities (M) for Uniformly Reactive
Spheres with an Interparticle Potential in the Unimolecular Case of
the  Formo 

^ r  ,  -  o \ ,u(r)=flfr)

effective molarity

dimensionality' . f  =  1 .0 / =  l . o  x  l o : , f  =  1 .0  x  l0o

9.34 x  105
9 . 1 8  x  1 0 5
9 .14  x  lOs

l  8.00
z  3 . 1 7
3  1 . 0 7

1460
l 280
r  1 8 0

oThe Smoluchou'ski result for the bimolecular case k6i = 4rDa is
used in al l  eramples. These results are based on numerical integration
o i  eq 24.  a  = 1 .0  (At ,  n  =  i0 .0  (A)  Uni ts  o f  /are  kca l .mol - r .  In-
tegrat ion was per formed us ing the IMSL l ib rary  o twooq. r5
t Dimensional i ty of unimolecular reaction.

as seen in Table III. As the force constant f increases, the
advantage of the unimolecular reactions of lower dimensionality
is lost. This is due to the very strong potential forcing the particles
to move straight toward each other regardless of the dimensionality
of the space available for diffusion. The attractive potential here
is intended to model the relief of strain in the case of reactants
fused to a common molecular framework. Such relief of strain
has long been thought to be an important factor in reactions that
display large effect ive molari t ies; l '2 the present results support
th is  v iew.

The results for dif fusion-control led reactions without inter-
particle forces can also be compared to results for models in which
the reaction is act ivated rather than dif fusion control led but in
which al l  other features are unchanged. Consider the reaction

A + B $ x 3 P r o d u c t s  ( 3 5 )
k1

and let k, )) k, so that the reaction is not diffusion controlled;
rather, the rate is limited by the activated process corresponding
to k2. The usual steady-state analysisra'te yields

k = Kkz (36)

where K = kt lkl  is an equil ibr ium constant for the formation
of the encounter complex X. If A and B are distinct molecules,
the reaction is bimolecular and2o

K = K6i = Lu (37)

where I is Avogadro's number and u is the volume in liters
available for relative translation of A and B in the encounter
complex X. If, however, A and B are fragments of the same
molecule. the reaction is unimolecular and20

K = Kuni = u/V (38)

(18) Calef, D. F.; Deutch, J. J. Annu. Reu. Phys. Chem. 1983, 34,493.
(19) McCammon, J. A.; Northrup, S. H.; All ison, S. A. ./. Phys. Chem.

1 9 8 6 . 9 0 . 3 9 0 1 .
(20) McQuarrie, D. M. Statistical Mechanics; Harper & Row: New

York,  1976.
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where u is as defined above and V is the volume in liters available
for relative translation of A and B excluding the reactive volume
D. Then the effective molarity is

EM = Kunik2/ Kb1k, = (LV)-t (39)

For the three systems in the rows 4-6 of Table II ,  and 3D uni-
molecular reactions, the activated (diffusional) effective molarities
are,  respect ive ly ,0 .40 (0 .48 M),27 (69 M),  and 416 M (5060

M). These three systems dif fer only in the volume Z avai lable
for unimolecular fragment diffusion outside the reactive volume
u; the bimolecular reactions are the same for the three systems.
The rate constant kun; ?od the EM of the diffusion-controlled
reactions increase more rapidly with decreasing V than do those
of the activated reactions. This is due to the nonuniform dis-
tribution of reaction partners in the (nonequilibrium) diffusion-
control led reaction.

Conclusion

Simple diffusion-controlled reactions between spherical, iso-
tropically reactive groups can display large rate enhancements
when restr ict ive translat ional constraints are imposed on the

unimolecular reaction. Additional rate enhancements occur when

a reduction in dimensionality accompanies the translational

constraint unless the latter is very restrictive. If the reactants are

not isotropically reactive, the effective molarity will be further

increased if the geometric constraints in the unimolecular system

keep the reactive surfaces in a proper orientation for reaction. Very

large rate enhancements can occur when an attract ive potential

operates between the reactive groups in the unimolecular system,

corresponding to some form of internal strain relief upon reaction.
These simulat ion results indicate that highly elevated values

of effect ive molari ty are not l ikely to arise from mass transport
considerations alone. To reach effective molarities greater than
about 103, i t  is necessary to have favorable energetics, modeled
here by an attractive intramolecular potential, or geometries so

constrained that the concept of reactants separated by a tether

becomes questionable.

Acknov,ledgment. This work has been supported in part by
NIH. NSF. and the Robert A. Welch Foundation. M.H.M. is

supported by' an NIH Traineeship under the Houston Area

Biophl 'sics Training Program. J.A.M. is the recipient of the 1987
Hitchings .A*'ard from the Burroughs Wellcome Fund.


	280(1).PDF
	280(2).PDF
	280(3).PDF
	280(4).PDF
	280(5).PDF
	280(6).PDF

