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Sclf-assembled monolayers (SAMs) of w-functionalized long-chain alkanethiolates on
gold films are excellent model systems with which to study the interactions of proteins
with organic surfaces. Monolayers containing mixtures of hydrophobic (methyl-
terminated) and hydrophilic [hydroxyl-, maltose-, and hexa(cethylene glycol)—termi-
nated] alkanethiols can be tailored to select specific degrees of adsorption: the amount
of protein adsorbed varies monotonically with the composition of the monolayer. The
hexa(cthylene glycol)~terminated SAMs arc the most effective in resisting protein
adsorption. The ability to create interfaces with similar structures and well-defined
compositions should make it possible to test hypotheses concerning protein adsorption.

NDERSTANDING THE MECHANISM
of protein adsorption at surfaces
(1, 2) is an important ekement of

rescarch in protein chromatography (3),
clinical diagnostics (4), biomedical materials
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(5), and cellular adhesion (6). No system is
available that permits the structure and
propertics of the interface to be controlled in
detail sufficient for the investigation of hy-
potheses concerning protein adsorption at
the molecular level. We report a study of
protcin adsorption at interfaces between
SAMs and aqueous buffer solutions. The
results indicate that the organic interfaces
prepared by the self-assembly of long-chain
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Akancthiols onto gold are suitable model
- systems for the study of protein adsorpdon
at interfaces.

We prepared the SAMs by the chemisorp-
ton of alkanethiols from 0.25 mM soludons
in ethanol or methanol onto thin (200 = 20
nm) gold films supported on silicon wafers
(7). In SAMs derived from w-subsdrtuted al-
kane-1-thiols [R(CH,),SH, n 2 10, where
R is a small funcdonal group], the molecules
pack densely on the gold surface in a predom-
inandy rrans-extended conformadon, with the
axss of the polymethylene chains at an average
cant of =30° from the surface normal (8). The
njernal domains of these monolayers are pseu-
do-arysualline; the chain termini are less or-
dered (9). One can conwrol the interfadal prop-
erdes of these monolayers by changing the tail
group, R. SAMs comprising mixtures of two
or more components can be prepared by ad-
sorpton from soludons containing mixtures of
these components: the components of such
“muxed SAMs” are not segregated into macro-

Fig. 1. Schematic representation of the structures
of mixed monolavers of HO(CH,),;SH and
CH;(CH,),SH  (t0p), of Glc—a(l,4)-Gle-
B(1)-0(CH;),(SH and CH;(CH,)sSH (mid-
dle), and of HO(CH,CH,0),(CH,),,;SH and
CH;(CH;),oSH (bortom). The ethviene glveol
chains in the lower structure are flexible but
probably prefer a helical conformation when in
contact with water (32). The arcas of the hatched
regions are roughly proportional to the cross-
sectional areas of the polar tail groups. The scale
bar is approximate and applics to all three illus-
trations.
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scopic islands (10). This combinadon of a
uniform substrate and the ability to control the
composition—and to some degree the souc-
ture—of the interface at the molecular scale
have made SAMSs excellent systems with which
to study the physical-organic chemistry of or-
ganic incerfaces.

We used five alkanethiols, R(CH,),,SH:
R = HOCH,~, 1 (10); R = Gle—(1,4)-
Gle—B(1)-0-, Glc = glucose, 2 (11); R =
HO(CH,CH,0),CH,-, 3 (12); R=H-, 4
(13); and R = CH;~, 5 (10). The SAMs de-
rived from 1, 2, and 3 model three matenals
that resist the adsorpton of proteins: hydrox-
ylated polymers such as poly(hydroxyethyl
methacrvlate) (14), agarose (15), and polymers
containing polv(ethvlene oxide) (16), respec-
dvely. For each model system, we prepared a
series of mixed SAMs (10) from a hydrophilic
alkanethiol (17) (1, 2, or 3) and a hydrophobic

alkancethiol (5 with 1 and 3; 4 with 2). The
structures of these mixed SAMs are shown
schemagcally in Fig. 1. We calculated the mole
fracton of hvdrophilic alkancthiolate in each
mixed SAM, x, by normalizing the intensity of
the O(ls) x-ray photoclecron peak obrined
from the mixed SAM to that of 2 SAM con-
taining only the hydrophilic component and by
assuming that this normalized intensity is di-
rectly propordonal to the number of oxygen
atoms in the SAM. In the case of SAMs formed
from mixtures of 3 and 5, the intensity of the
O(Ls) peak is Linearly proporzonal to the ellip-
sometric thickness of the SAM (12); this ob-
servadon is soong evidence that our assump-
gon 1s valid for the other two cases.

We examined the adsorption of five well-
characterized  proteins, ribonuclease A
(RNase A), pyruvate kinase, fibrinogen, ly-
sozyme, and chymotrypsinogen (18), on

B4
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Fig. 2. Adsorption of proteins to mixed SAMs varics monotonically with the compoasition of the SAM.
The thickness, d, of the adsorbed film of RNasc A (top), pyruvate kinase (middle), and fibrinogen
(bortom) on mixed SAMs contining HO(CH,),;SH and CH;(CH,),SH (diamonds,
R = HOCH,), Glc=(1,4)-Glc-p(1)-O(CH,),,SH and CH;3(CH,;)¢SH (circles, R = Glc;0,
Gle = glucose), or HO(CH,CH,0),(CH,);,SH and CH,(CH,),oSH (squares, R = HO(EG),CH,,
EG = cthylene glycol, -OCH,CH,-) is plorted as a function of the composition (lefr) mc.l wertabilicy
(right) of the SAM. The filled and hollow symbols represent data derived from two independent
experiments. The values of d were determined by ellipsometry and represent the average of three
measurements made at different positions on a single sample. The standard deviations of the ob{crvcd
values of d are no larger than the symbols representing the data. The values of x, the mole fraction of
R(CH,),oS on the surface, were measured before protcin adsorption. Each valuc is the intensity of the

O(1s) x-ray photoclectron peak of the SAM, normalized to XR(CH;) 05

surface

= 1 for a SAM containing only

R(CH,),oS. The values of 8, arc the maximum advancing contact angrcs of water (10, 30) on the SAM
before protein adsorption. The data are offset vertically for clarity; the dashed lines show the location
of d = 0 A (no adsorbed protcin) for cach scries of mixed SAMs. The solid curves organize the data
visually but do not represent an artempt to model the data.

REPORTS 1165



L.

_ Aese mixed SAMs (19). The results for
R Nase, fibrinogen, and pyruvate kinase are
summarized in Fig. 2 (20). We measured the
thickness, d, of the adsorbed protein film on
cach SAM by cllipsometry, treating the film
as 2 homogencous laver of uniform thick-
ness with a refractive index of 1.45 (21).
Any difference between the real refractive
index of the adsorbed protein and 1.45
results in a systematic error in the calculated
thickness but does not change the reladve
values or the conclusions. The calculated
values of thickness are accurate to within
=25% (22).

The dara in Fig. 2 point to several con-
clusions. (i) The system comprising proteins
adsorbed on SAMs of alkanethiolates on
gold generates reproducible data concerning
the extent of protein adsorption. The stan-
dard deviatons of measurements of d taken
on several independently prepared samples
are within the range of 1 to 4 A, near the 1
to 2 A limit of ellipsomerry. The N(1s)
phortoclectron signals from adsorbed films of
chymotrypsinogen correlate well with the
values of d determined by ellipsomenry (23).
This observation suggests that variability in
the refractive indices of the adsorbed pro-
teins, which would cause nonuniform errors
in the calculation of d, are not important in
this system. (i) SAMs containing high con-
centrations of 3 prevent adsorpdon of the
five proteins examined, including fibrino-
gen. SAMs containing high concentradons
of 2 nearly eliminate the adsorpdon of fi-
brinogen and pyruvate kinase and prevent
adsorption of the other proteins examined.
(iii) The observed value of the thickness of
the adsorbed protein laver on the hydropho-
bic, methyl-terminated surface (4 or 55
x = 0 in Fig. 2) corresponds approximately
to that expected for a monolayer of native
protein {24-27). Consistent with others’ ob-
servations (28), multilayers of protein ap-
pear not to form. (iv) There is only a general
correlation between the interfacial free ener-
gv of the SAM [as measured by cos 6,, the
cosine of the maximum advancing conract
angle of water on the SAM (29)] and d.
Although within a sct of SAMs derived from
the same components more hydrophobic
surfaces adsorb greater quantities of protein,
the thickness of the adsorbed protein film at
any given interfacial free energy differs for
cach hydrophilic component. For example,
when 8, = 34°, protcins do not adsorb to
SAMs  containing  HO(CH,CH,0),-
groups but do adsorb to SAMs containing
Gle—x(1,4)-Gle-B(1)-O- or HOCH,-
groups. The same effect is observed when
the values of d for different protcins on
SAM:s of equal receding contact angle, 6,
are compared.

From this limited set of data, it is prema-
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ture to infer mechanisms of adsorption of
proteins at interfaces. The observation that
adsorption increases as hydrophobicity in-
creases (for a given sct of components) is
expected and consistent with the idea that
hydrophobic interactions are important in
protein adsorption. The observation that
HO(CH,CH,0)¢- groups are especially
effective in preventing protein adsorption
suggests that steric stabilization—a phe-
nomenon commonly used to explain the
stability of colloidal suspensions in the pres-
ence of polymers (30)—is important in pre-
venting protein adsorption (31). The ex-
tent to which entropic repulsion (30)
contributes to the steric stabilization is not
clear and may vary with x: the steric re-
quirements of packing in the SAM should
reduce the conformational entropy of the
HO(CH,CH,0).~ groups as their con-
centration in the SAM increases. We be-
lieve that SAMs are the best defined sys-
tems now available for examining the
interactions of proteins and surfaces and
that they will provide the means to test
many of the current hypotheses regarding
the mechanisms of these interactions.
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