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Abstract

This review includes three sections: ( i)  preparation. structure. and propert ies of self ' -assembled monolayers (SAMs); ( i i )
techniques fbrpatterning SAMs, including microcontact print ing (pCP). UV-photol i thography, and c-beam writ ing: and ( i i i )
use of patterned SAMs as ultrathin resists (2-3 nm thick) in processes fbr pattern transf 'er based on selective chemical
etching and selective deposit ion. Microcontact print ing is a non-l i thographic technique tbr torming patterned f 'eatures with
dimensions >100nm; the init ial  product of patterning is organized monolayers of alkanethiolates on Au, Ag, Cu and GaAs,
and of alkylsi loxanes on Si/SiO. and glass. In this technique, an elastomeric stamp having a surface patterned with a rel ief
structure is used to generate patterned SAMs on the surfhces of solid materials. Thesc pattcrned SAMs are resists that protect
the underlying substrates from dissolut ion in selective etchants (for exarnple, fbr evaporated thin f i lms of Au and Ag,
aqueous solut ions of K,S,O., K,Fe(CN),- and K.,Fe(CN),,).  Patterned structures of gold or si lver that are produced by the
combination of pCP and selective etching can be used as the secondary masks fbr subscqucnt proccsses such as isotropic
etching of SiO,, isotropic or anisotropic etching of Si,  anisotropic etching of GaAs. and reactive ion etching (RIE) of Si.
Patterned SAMs can also be used as templates for select ive deposit ion o1' nretals by chenrical vapor deposit ion (CVD),
electroplat ing, or electroless deposit ion.

Kevworcls: Self ' -assembled monolayers (SAMs); Pattern transf 'er: Ultrathin resists

1. Introduction

Lithography at nanometer scales (<l00nm) requires resists thin enough that they give f-eatures
with reasonable aspect ratios between the horizontal and vertical dimensions. Traditional photoresists
have been used as very thin films []. More recently, self'-assembled monolayers (SAMs) 12-41have
begun to be explored for applications in micro/nanofabrication [5,6].

Self'-assembled monolayers are highly ordered molecular assemblies that form spontaneously by
chemisorption of functionalized long-chain alkanes on the surf.aces of appropriate solid materials (Fig.
1(a)), their structures are effectively 2-D organic crystals or quasicrystals l2l. Self-assembled
monolayers have, in the past, been extensively studied as model systems for wetting, adhesion,
lubrication, corrosion, protein adsorption, and cell attachment 12-11. Well-established systems of
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head  g roL rp .  X .  a l l ou ' s  the  su r t ' acc  p roper t i cs  o l ' t hc  n rono laye r  to  bc  con tn r l l e t l :  i t s  th i ckncss  can  be  changec l  b r  chang ing  the
t lun lbe r '  r t ,  o l ' n l c thv lenc  g roups  in  the  po l l n re th - r l ene  ch l i n .  Thc  a l kv l  cha ins  a rc .  on  thc  a rc ragc .  t i l t cc l  appru r i rna te l y  30 , -
f rom the  no rn la l  t o  the  su r f i t ce  o f  Au .  (b )  Represen ta t ion  o l ' a  c lense lv -packec i  SA\ {  o1 'a l kane th ie l l t c  on  thc  su r l ' ce .1 ,a
co l l o ida l  pa r t i c le  o f  go ld  w , i t h  a  d iamete r  o f  -  l 0  nn t .

SAMs include alkanethiolates on Au. Ag. and Cu [2-4]: ancl alkylsi loxanes on hydroxyl-tcrrninated
sur faces ( fbr  example,  Si /S iO. ,  A l /A l ,O, ,  g lass,  mica.  and p lasma-t reated polymers)  I -1 .71.  Less-
characterized systems of SAMs include: alkanethiolates on GaAs ancl InP [8,9]. Less-characterized
systems of  SAMs inc lude:  a lkaneth io lates on GaAs and InP I8.91:  a lkanesul f inates on Au t l0 l ,
a lky lphosphines on Au t l l l :  a lky l  groups d i rect ly  bound to Si  I l2 l :  a lcohols .  amines and isoni t r i les on
Pt  [4 ,131;  carboxyl ic  and hydroxamic ac ids on A-e,O or  Al .O.  V14l :  a lky lphosphatcs on ZiO.
I l5 , l6 l ;  and a lky lphosphonic ac ids on ITO l l7 l .  New systems are s t i l l  be ing devel .pecl .

Self ' -assembled monolayers as ultrathin resists provide several potential advantage s. ( i)  Self-
assembly leads to equi l ibr ium structures that are at. or close to. thermodynamic mininrum. As a result.
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self-assembling structures tend to be self ' -heal ing and defect-reject ing. ( i i ;  The relat ively low
solid-vapor intertacial free energies of methyl- and f luoroalkyl-terminated SAMs al low them to be
handled outside clean-room faci l i t ies without irreversible contamination. ( i i i )  SAMs can be used as
very thin passivating or insulat ing f i lms for control l ing adsorption of impurit ies on surfaces; they may
be useful in fabricatin-s capacitors and molecular electronic devices I l8-201. A typical SAM of
hexadecaneth io late (CH.(CH.)r .S )  on Au is  -2.5 nm th ick.  and rhe th ickness of  the SAM can be
control led to within 0.1 nm in most cases by control l ing the number of carbon atoms in the alkyl chain
(Fig. l(a)).( iv) SAMs can act as ultrathin resists in l i thographic processes. Because SAMs are so thin,
some concerns (for example, depth of tbcus: optical transparency in UV and VUV regions, shadowing
and undercutt ing) that currently inf luence the pertbrmance of photoresists in hi-eh-resolut ion imaging
processes are not important in SAMs. The avai labi l i ty of nanometer thick resists also opens the door
to new l i tho-eraphic techniqr,res. For exanrple, in a process that has been suggested that uses metastable
argon as the pattern-generating species. the thickness of the resist must be less than -3 nm, since the
damage in the resist by contact with the metastable atom is l imited to a surt-ace layer of <0.5 nm thick
t2l l .  (v) Fabrications involving SAMs are relat ively low-cost cornpared with conventional l i thog-
raphic methods.

2. Preparation, structure, and stability of SAMs

SAMs are usually prepared by immersion of sol id substrates in solut ir-rns containing species reactive
toward the surface, or by exposure of the solid to vapurs of reactive species 12-41. For example,
highly-ordered SAMs of hexadecanethiolate on gold can be prepared by immersing a gold substrate in
a -2 mM solut ion of hexadecanethiol in ethanol for several minutes. Ordered SAMs have also been
formed on the sur taces of  co l lo ida l  par t ic les wi th d iameters o l ' ) l50nm (Fig.  l (b) )  122.231.  The
process of spontaneous formation of an urdered structure that occurs as adsorption and reaction of a
thiol on gold is an example of molecular self-assembly 1211.

The structure of SAMs has been characterized by transmission electron dif fract ion [25], polarized
infrared external ref lectance spectroscopy (PIERS) t3l,  low-angle X-ray scattering t261. low-energy
helium dif fract ion 1271. and scanning probe microscopy [28]. I t  is general ly accepted that long-chain
alkaneth io lates have r  V:  x  V3R30 over layer  s t ructure on rhe sur facc of  Au( l l  l )  (F ig.  l (a) ) .

Different types of SAMs havc dif ferent stabi l i t ies towards heating and chemicals. SAMs of
alkanethiolates on Au become disordered and/or decompose at elevated temperatures (-100'C);
oxidation of alkanethiolates to alkanesulfonates in the presence of UV l ight and ozone also reduces
their stabi l i t ies 13,29,301. In contrast, some SAMs of alkylsi loxanes on Si/SiO. are stable up to
-450"C u 8l.

3. Formation of patterned SAMs

Lateral control of SAMs has been achieved by a variety of patterning techniques. Classical
techniques such as UV-photol i thography [6,3 ]-33] and e-beam writ ing t3a-361 have been used for
producing patterns in SAMs of alkanethiolates on Au. Ag and GaAs, and of alkylsi loxanes on
Si/SiO",; new techniques, such as microcontact print ing (pCP) 137-401. atomlithography [21],
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microwrit ing [41], micromachining (using an STM tipft2l or sharp stylus t43l) ancl micromolding in
capillaries (MIMIC) t44l have also been developed for generating patterned SAMs. Patterned SAMs
can be imaged and visuahzed using a number of techniques, such as SEM [38], AFM [45], SIMS and
condensation figures (CFs) 146).

Among these techniques for generating patterned SAMs, microcontact printing is the one that
seems to off'er the most interesting combination of convenience and new capability (Fig. 2).
Microcontact printing involves direct pattern formation by contact of an elastomeric stamp with a
surface: this technique forms SAMs when used with appropriate reactants and surfaces [37-40]. It
provides superior control over the surface chernistry. It is a parallel process - that is, it fbrms the

+- Photoresist
(0 .4 -1 .5  pm)

1) Pour PDMS over master
2) Cure at  65 oC for -10 h

1) Peel off stamp
2) Apply " ink" solut ion

<+ Alkanethiol

+Th in  f i lm o f  Au
(20-1000 nm)

Microcontact print

l- 

M (2-3 nm)

F t " . l  . l  lDepos i tselectivetV 
| | 

sete'cfivelV

t f

Fig. 2. Schematic procedure f i l r  carrying out pr.CP of alkanethiols on Au. An elastonrcric stamp was fabricated by casting
poly(dimethylsi loxane) (PDMS)against certain rel iel 'structure that was macle by photol i thography 6r micrgmachining. After
applying hexadecanethiol solut ion in ethanol. the stamp was dried in a stream of N,. and bnrught into contact with the
surface of gold fbr 5-10 s. A patterned SAM of hexadecanethiolate was fbrmed on the parts of the eold surface that were in
contact with the stamD.

PDMS

S i
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pattern over the entire area of the substrate in contact with the stamp at the same time - and thus is
suitable for patterning of areas of several cm2 on a single contact. At present, pCP has been used to
pattern SAMs of alkanethiolates on Au 131-101. Ag l4ll, Cu t48l and GaAs l49l and of
alkylsi loxanes on Si/SiO, and glass 1501. Features with dimensions larger than 0.3 pm can be
routinely produced by prCP; smaller features (-l00nm) have also been fabricated with greater
dit frculty and lower rel iabi l i ty [5l-531. The lower l imit fbr the resolut ion in this technique, the upper
limit of the area that can be patterned on one contact. and the degree to which multiple impressions
can be brought into registration, have yet to be established.

4. Pattern transfer from SAMs to the underlying substrates

Patterns in SAMs can be transfered to the underlying substrates either by selective etching or by
selective deposit ion (for example, CVD. clectroplat ing and electroless deposit ion).

4.1. Puttern trunsfer bt' selec'tive etc'hins

Table I summarizes selective etchants that have been studied for use with patterned SAMs
generated by pCP. The most extensively studied systems are patterned SAMs of hexadecanethiolate
on evaporated f i lms of Au l3l-401 and Ag t4l l .Our original work focused on the system of
hexadecanethiolate on Au, but hexadecanethiolate on Ag is also attractive. Etching protocols for silver
are more convenient to use than those for gold - silver is chemically more reactive than gold, and thus
silver dissolves more rapidly than gold in most etchants; the level of defects in SAMs on Ag seems to
be lower than that on Au; silver is an excellent electrical and thermal conductor with useful properties
t541. Fig. 3(a) shows scanning electron micrographs (SEM) of a test pattern of silver (50 nm thick)
that was fabricated by pCP with hexadecanethiol. followed by selective chemical etching [171. The
edge resolut ion of these si lver features is <20 nm (Fig. 3(b)). The nanometer thick SAMs probably

Table I
Selectrre etchants (al l  in H.O) that have been used with patterned SAMs

Surf'ace SAM Etchant (approximate pH ) Ref.

Au

Ag

Cu
GaAs
s i / s i o ,
glass

RS

RS
RS
R S i O , / . "
RS iO . , , , "

RS

K . S , O , / K . F e ( C N ) , , / K , F e ( C N ) o  (  l 4 )
K C N / O .  (  r 4 )
c s ( N H , ) 2 / H . O .  ( l )

Fe (NO.  ) .  ( 7 )

K . S , O , / K , F e ( C N ) o / K r F e ( C N , l , ,  ( 7  )
NHIOH/K ,Fe (CN) " /K *Fe (CN, ) , ,  (  l 2 )
N H + O H / H . O .  ( t 2 )

N H + O H / O .  (  I  2 1
K C N / O ,  ( 1 4 )
F e C l . / H C l  (  1 )
NH.1OH
NF/NHrF (par t ia l ly  se lect ive)
HF/NHrF (par t ia l ly  se lect ive)

38. 60
3l -11
60
/ 1 1
a t

11.  60
47
A 1

1 1

1 '7
+ t

'tu
3 1 . 1 9
34, -50
50

"These SAMs are fbrmed by contact  o f  RSiCl .  or  RSi (OCH.) .  w i th  the subst ra tes
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protects the underlying substrates from dissolution by blockin-e the diffusional access of etchants. Fig.
3(c) is a cross-sectional SEM of silver microstructure (0.2 pm thick) that was generated by the
combination of pCP and selective chemical etching. Large si lver l ines (-50 pm wide. -0.2 pm thick,
and separated by -50 pm) on Si/SiO, procluced by this method have the meral l ic conductivi ty
expected for bulk metal (5.56 X l0s S/cm); and paral lel l ines o1-si lver are electr ical ly isolated from
each other.

The ability to generate arrays of microstructures of coinage metals with controlled shapes and
dimensions is directly usef ul in fabricating arrays of microelectrocles f or sensors ancl other
electrochemical devices. These patterned f l lms of Au and Ag can also be used as the secondary masks
for the etching of underlying layers of SiO. and Si t47.551 (Fig. 3(d)). The t 'eatures shgwn in Fig. 3
were generated in the open laboratory, without access to clean room facilities. Bccause proccsses for
formation of SAMs rely on molecular self-assembly, they resist clef-ects ancl contamination.
Microcontact print ing can, in principle. be used for many micro/nanofabricatisn tasks in low-cost
processes. The quality of the patterns produced are not yet compatible u,ith that required for
microfabrication of complex electronic devices, but the technology is str l l  in an early stage of

cw

1F;

W
t :  I  ,

ffi
d ffi

:

W

ffi
ffi

ffi
5Fm

Fig.  3 .  (a ,  b)  SEMs of  a  tes t  pat tern o f  Ag ( -50nnr  th ick)  that  was rec luced by se lect i rc  e tch in-u l i r r  - l -5  s  in  an aqucous
so lu t i on  con ra in i ng  K .S .O ,  (0 .1M) .  K .Fe (CN) , .  ( 0 .01  M)  and  K*Fe (CN, l . ,  t 0 .001  M l .  us ing  a  pa r r c rned  SAM o f
hcxadecanthiolate as the resist.  The bright regions are si lver. the dark regrons are Si/SiO- where thc unclerivatized si lver has
been removed bi '  etching. (c) A cross-sectional SEM 0f a test pattcrn that was f 'abricatecl in Ag f i lms (0.2 prn thick) using the
combination of pCP and selective wet etching in the above etchant for - '15 s. (d) SEM of a si l iggn pattern that was f irrmecl
by an isot rop ic  e tch ing of  s i l i con in  KOH/ i -propanol  a t  65 'C f i r r  - l0min us ing a pa lerned s i lver  l i lm as n task.  Thc s i lver
rnask that was fbrmed by pCP and selective etching remainecl on the surtace ol ' the Si substrate.

-

100 nm
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development. I t  is direct ly appl icable to many problems in fabricating sensors and oprical devices,
where the requirements fbr continuity, isolation, and unitormity in the final patterns are less serious.

A potential advantage of pCP over photolithography is that pCP can generate features with a range
of ditf-erent sizes using a single chrome-mask. PDMS is an elastomer. and conforms to the surf'ace of
the substrate during pCP. This characteristic of PDMS provides an opportunity to generate f'eatures
with reduced sizes by physical ly manipulat in-r the stamps. Fig.4(b) shows an example in which a
reduction of features from -2 p^ to -0.2 pm was achieved simply by compressing the PDMS stamp
whi le  conduct ing pCP t5 l l .  In  a second example (F ig.4(c))  manipulat ion of  the chemisrry  of
formation of the SAM provides another strategy lbr reduction in feature size: here a reduction from
-2 pm to -0. I  pm was accomplished by using control led reactivc spre ading of the hexadecanethiol
on gold 1521.

Photolithography cannot be easily applied to curved surfaces fbr a number ef reasons. Because pCp

Ar/SAM
ttr

I

2 6 1

Compressive
microprinting

AFM

10pm

Reactive
spreading

30 nm
0

30 nm
0

Fig' -1. (a) SEM of a test pattern of golcl that was produccd by thc standard procedurc ol '  p( iP ancl selcct ive etching i1
oxygen-saturated cyanide solut i t lns. (b) SEM of a test pattern ol 'golcl that was proth-rcecl with thc sanre PDMS stamp as in
(a), but undcr mechanical conlpression. Size reduction fronr -2 p-nr t() -0.2 pnr uas achievecl in t lre one-cl irnensrgnal
compression. Two-dimensional compressic)l t  wits also possible. (c) SEM o1'a test pattern o1'golcl that was procluced with the
same PDMS stamp as in (a). but print ing was carr ied under water and the starnp was al lowed to renrain in contact with the
gold surface fbr -5 min. The reactive spreacl ing of '  hexadecanthiols l ionr the eclges of the sri l l r . lp caused a reduction in
dimension fbr the bare regions f l 'ont -2 pnt to -0. I  prn.

2 p m



262 Y. Xiu et ul. I Microelectronic' Engineerinp -72 ( 1996) 2-t5-268

involves conformal contact using an elastomer stamp, it can be usecl to print patterns on even sharply
curved surfaces t56l.Fig. 5 shows SEM image of gold microstructures (Fig. 5(a)) and patterned
SAMs (Fig. 5(c)) on curved surfaces. Microcontact printing generated patterns on planar and curved
substrates with similar resolution (Figs. 5(b) and (c)).

4.2. Pattern transfer by selective deposition

In addit ion to selective etching, select ive deposit ions of metals using CVD [57-591, electroplat ing
[36], and electroless deposit ion [6,38] have also been accomplished with patterned SAMs as
templates. Fig. 6(a) shows an SEM image of Cu lines that had been deposited on a Si/SiO, surface by
CVD using (hexafluoroacetylacetonato)copper(I)(vinyltrimethylsilane) as the source gas; the pattern
on the surface was defined and directed by u patterned SAM of octadecylsiloxane generated by pCP
t581. Figs. 6(b) and (c) show SEM micrographs of microstructures of copper that were produced by
selective CVD; the top surfaces of the substrates had been derivatized by SAMs of octaclecylsiloxane
using contact print ing. Copper deposited only in the recessed regions unclerivatized by SAMs.
Procedures based on surf.ace-selective CVD may be useful in microfabrication. For example. the

a) b)

CH cooH

50 pm rf,Ir
Fig. 5. (a) SEM image of a gold pattern on a curved surface. The pattern was formed on a gold-cgated glass fiber by pCP
with hexadecanethiol and selective etching of gold. (b. c) SEM images of patterned SAMs f irrmecl by pCp on a planar and a
curved surf 'aces. Light regions are covered with CH.-terminated thiolate (CH,(CH.),.S );  dark reglons are derivatized with
COOH-terminated th io la te  (HOOC(CH,) , .S ) .

c)

planar

curved
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Cu
I

SAM
+

Fig.6. (a) SEM image of copper l ines produced by selective CVD on Si/SiO. surface that had been patterned with SAMs of
octadecylsi loxane using pCP. (b, c) SEM images of copper microstructures that were fabricated on textured Si/SiO.
surfaces; the top surface of the substrates were covered by SAMs of octadecysi loxanc dclrvered by a f lat PDMS stamp. The
side walls of the r idges in (b) and the 0.7 pm dri l led holes in (c) were f iee f iom the SAMs. Copper nucleated and deposited
only on those regions that were not derivatized by the SAM.
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topology of the substrates (especially that in (c)) is directly related ro f'eed-throushs and related
structures in many rnicroelectronic devices.

5. Conclusions and future work

Self-assembled monolayers provide an effective ancl low-cost strategy firr pattern transf'er in micro-
and nanofabrication. A variety of techniques have been developed fbr thc fbrmation of patterned
SAMs. These patterned SAMs serve direct ly as nanometer-thick resists in protcct ing the underlying
substrates from dissolut ion in wet etchant [37 --40,4],601. Several issues rerlain to be solved. however.
before these patterning techniques based on SAMs f ind real appl icat iclns in rnicrselectlrnics. First,  the
smallest feature that can be produced by these patterning techniques has yet te be cstabl ished.
Currently, using SAMs as resists, the srnal lest f-eature that has been generi i tcd by UV-photol i thggraphy
is  -0.4 pLm [6] .  -25 nm for  e-beam wr i t ing [34] ,  and -100 nm for  microconract  pr in t ine I52l  Secgncl .
the formation and distr ibution of def-ects in SAMs. especial ly under thc concl i t ions of chemical
etchin-e. must be undcrstood. Using thc combination ot '  pCP with hexadecancthiol and sclect ive wct
etching, we have bcen able tt t  generate pattterned, def-ect-free, si lver structu;es (50nm thick) with an
area of -0.4 mm' t4l .6l l .  Third. the compatibi l i ty of thcse parrerning rechniques with the preduqien
of microelectronic circuitry must be explored. The coinage metals (Au. Ag and Cu) thar are widcly
used as substrates for thc fbrmation of SAMs of alkanethiolates cannot bc usecl in the production of
microelectronic devices based on si l icon. because these atoms dif f lse into the si l icon ancl act as traps
162l .Systems that  form SAMs di rect ly  on semiconduuurs s t i l l  mLrsr  bc dcrc loped [121.

ln more general terms, however. SAMs ancl patterning by pCP i l lustrurtc a new appreach tg
microfabrication. SAMs are representative self-assembling systents. ancl dcrnonstrate the attract ive-
ness of self-assembly as a strategy f irr  torming small .  hi-uh-quali ty struct l l rcs with remarkably, l i t t le of
the investment required by the more farni l iar clcan-roolrr technolosies r.rscd in micrclf l lbr icat ion. In
part icular, the farct that self-assembling systems are therntodynantic nt inirngrn structu;es. ancl therefbre
tend to reject def.ects. Ir leans that problems such as part iculate cctntaminatign (with is Ll constant
problem in photol i tho-eraphy and other l ine-of '-sight techniques) wil l  be lcss seriels preblems with
SAMs (in which the SAM-forming component can spread spontaneously uncler rhe part icle) than in
photol i thography (where part icles cost shaclows).

Microcontact print ing i l lustrates the largely unexpkrrecl potential of non-1'rhotol i thr)eraphic pattern-
ing techniques. This technique is capable, in a research sett in-t.  of -eenerating l(X)- l(X) nm features: i ts
l imitat ions after seri t lus development rernain to be clef ined. The elastonreric character ef the master
provides both problems and opportunit ies in registrat ion. The capabil i ty f i rr  large-area patterning by
pCP is substantial,  but st i l l  remains to be developed.
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