
Beam redirection and frequency filtering
with transparent elastomeric diffractive elements

Bartosz A. Grzybowski, Dong Qin, and George M. Whitesides

A new, to our knowledge, type of optical device capable of beam redirection and frequency filtering is
described. It is based on a transparent elastomeric binary diffraction grating. When light is passed
through the device the intensities of the diffraction orders can be modulated by compression of the
elastomer in the direction perpendicular to the plane of the grating. Selective filtering of the component
frequencies of two-component light ~l 5 543.5 nm and l 5 632.8 nm! has been demonstrated. Exper-
imental observations are in agreement with theoretical calculations quantifying the performance of the
device. © 1999 Optical Society of America
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1. Introduction

This paper describes a new, to our knowledge, type of
optical device that is capable of frequency filtering
and beam redirection. The device is composed of a
transparent elastomeric element with a binary grat-
ing that is a few micrometers deep and is embossed
on its surface. When the elastomer is compressed in
the direction perpendicular to the plane of the grat-
ing, the relative optical path of the light traveling
through its raised and recessed regions changes.
Thus compressing the elastomer modulates the in-
tensities of diffraction orders. In addition, for a
given compression the intensity of light diffracted
into a particular order depends on the frequency of
light. If nonmonochromatic light is used the ratios
of the intensities of the component frequencies dif-
fracted into a given order will vary with compression.
To achieve efficient filtering, it is necessary for these
ratios to be maximized: That is, at a given diffrac-
tion order the intensity of one of the component fre-
quencies must predominate.

This paper shows that, with the elastomeric device
we describe, highly selective filtering of two-
component light ~l 5 543.5, 632.8 nm in our study! is
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possible for values of compressive strains that are
less than ;6%. Although other devices capable of
optical filtering exist ~tunable grid filters,1 grating-
based micromachined light modulators,2–5 Fabry–
Perot cavities,6,7 prisms8!, several characteristics of
this new type of filter make it an attractive alterna-
tive to these more familiar systems: ~i! It can be
fabricated easily and inexpensively. ~ii! The depth
of the grating is easily controlled because the submi-
crometer changes in the depth of the grating required
for operation require relatively large—of the order of
tens of micrometers—deformations of the elastomer.

The paper is organized into three parts. First, we
develop a simple theoretical description of the mod-
ulation of the intensity of light on passage through a
compressible binary grating ~some lengthy deriva-
tions are relegated to Appendix A!. Second, we de-
scribe the fabrication of the device and the
experimental methods used to measure its perfor-
mance. Third, we summarize the experimental re-
sults and compare experiment to theory.

2. Theory

The grating is assumed to remain binary during com-
pression. The transmission function t~x! ~see Fig. 1
for the coordinate system! is described by

t~x! 5 5exp~if! for nL , x , Sn 1
1
2DL

1 otherwise
, (1)

n 5 0, 61, 62, . . . , 6Ny2
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where f is the depth of modulation of the phase in
radians and L is the period of the grating. We as-
sume that the optical field is a plane wave before it
passes through the grating and that the number of
the grating lines N 1 1 is large. The Fraunhofer
complex-amplitude distribution U~ f ! is given by the
Fourier transform of the transmission function eval-
uated at the spatial frequency of f 5 uysl, where l is
the wavelength of light, s is the distance between the
plane of the grating and the plane at which the dif-
fraction is calculated, and u is the coordinate along
this plane9,10:

U~ f ! 5 *
2~N11! Ly2

~N11! Ly2

t~x!exp~2i2pxf !dx

5 (
m52Ny2

m5Ny2

*
mL2Ly2

mL1Ly2

t~x!exp~2i2pxf !dx. (2)

Substituting y 5 x 2 mL into Eq. ~2! and in the limit
of N 3 `, we obtain Eq. ~3! ~see Appendix A for
derivation! in which d is the delta function:

U~ f ! 5 (
m52`

`

dSf 2
m
LD 1

L *
2Ly2

Ly2

t~y!exp~2i2pyf !dy.

(3)

Fig. 1. ~a! Coordinates used in the calculations. ~b! Scheme of
the experimental setup. PDMS, polydimethylsiloxane.
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The diffraction orders are located at u 5 mlsyL @Eq.
~3!#, and the intensity of the mth order is equal to the
square of the modulus of the Fraunhofer complex-
amplitude distribution, as given by Eq. ~4!, below
Um~ f ! stands for U~ f ! when evaluated for a partic-
lar value of m#. The intensities of the zeroth @m 5
, I0~ f !# and the first @m 5 61, I1~ f !# diffraction

orders are given by

Im~ f ! 5 uUm~ f !u2 5
1
L2U*

2Ly2

Ly2

t~y!exp~2i2pymyL!dyU2

(4)

and are calculated by use of Eqs. ~1! and ~4! ~see
ppendix A! to demonstrate that changing the depth
f modulation of the phase f changes the intensities

Fig. 2. ~a! Calculated dependence of the intensities of the zero and
he first orders as functions of the phase angle. ~b! Effect of the

deformation of the grating during compression on the intensity of
the zero-order beam. Even with a conservative estimate of the
constant, C 5 20, the intensity curves with and without the stress
orrection are in good agreement across the operational range of
he device ~e , ;6%!. In both cases the calculations were carried

out with values of d0 5 1.8 mm and l 5 543.5 nm.
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of the diffraction orders @note that the intensity is
now written as a function of the phase; Fig. 2~a!#:

I0~f! 5
1 1 cos f

2
, (5a)

I1~f! 5
2~1 2 cos f!

p2 . (5b)

The magnitude of the phase f depends on the depth
of the grating d, the wavelength of the diffracted light
l, and the indices of refraction of the elastomer ne
@1.43 for polydimethylsiloxane ~PDMS!# and of air

air:

f 5
2p~ne 2 nair!d

l
. (6)

Because d changes on compression, the phase f is a
function of the degree of compression: f~d! 5 f~d0!
1 Df ~d0 is the depth of the uncompressed grating!.

sing Eq. ~6!, we can write Df as

Df 5
2p~ne 2 nair!~d 2 d0!

l
5

2pDnDd
l

. (7)

or small compressions, we assume the change in the
epth of the surface relief Dd to be proportional to the
displacement ~in the direction perpendicular to the
lane of the grating! of an element with a flat surface
t a depth equal to the depth of the uncompressed
elief: Dd } dz ~z 5 d0!. Using this proportionality

and the relations for stress and strain ~see Appendix
A!, we obtain the dependence of the change in optical

hase on the compressive strain e 5 DHyH @see Eq.
8!, below#, where DH is the change in the thickness
f the elastomer on compression,

Df }
2pDnd0

l

DH
H

, (8)

and H is the thickness of the elastomer in the uncom-
pressed state.

Equations ~5a! and ~5b! and expression ~8! provide
us with a description of the ideal optical response of
the system during compression. Although these ex-
pressions do not take into account other deformations
of the grating ~e.g., widening, buckling, or wiggling of
the grating lines!, they accurately describe the per-
formance of the device for compressive strains less
than, for example, 6% ~and for aspect ratios of the
grating lines that are less than, for example, 1.1,
when wiggling is not expected to be a major issue!.
t was shown previously by finite-element calcula-
ions11,12 that, for as much as ;10% compressive

strain, the grating retains a square wave shape.
Therefore we considered a simple qualitative model
in which the grating lines, as they are being com-
pressed along the z ~vertical! direction, expand in the
x ~horizontal! direction and retain a rectangular cross
section. If we assume that, for small compressive
strains, the horizontal expansion of the grating lines
Dx is proportional to the vertical compression d 2 d0
and, consequently, to the compressive strain e, Eqs.
9a! and ~9b! for the corrected intensities of the zero
nd the first orders, respectively, are derived ~see
ppendix A for details! as

I0,corr~f! 5
1 1 cos f

2
1 Ce2~1 2 cos f!, (9a)

I1,corr~f! 5
2
p2 cos2~peÎCy2!~1 2 cos f!. (9b)

he value of the constant C can be estimated from the
xperimental zero-order intensity curves by the sub-
raction of the ideal contribution, I0~f! 5 ~1 1 cos

f!y2, and the fitting of C to the resultant curve; in our
experiments C ; 10. For this value of C, the max-
imum difference between I0,corr~f! and I0~f! does not
xceed 0.07 $in the worst-case situation, when cos@f~e

0.06!# 5 21%, and between I1~f! and I1,corr~f! it is,
at most, 0.068. Although for higher strains these
differences become much larger @Fig. 2~b!#, the ideal
quations ~5a! and ~5b! describe the optical response
f the device well over its operational range ~e ,
6%!.

3. Fabrication and Experimental Protocol

We fabricated the elastomeric gratings ~2-mm lines
hat are separated by 2 mm! by casting and curing a
repolymer of PDMS against photolithographically
atterned lines of photoresist on silicon wafers.13–15

The thickness of the patterns was controlled by ad-
justment of the spinning rate at which the photore-
sist ~Shipley, photoresist 1822, maximum thickness
of ;3 mm! was applied: for thicknesses of 1.8, 2.2,
and 2.6 mm, the spin rates were 5500, 4000, and 3000
pm, respectively, for 40 s. The UV exposure times
or such photoresist-coated silicon wafers were 5.5,
.5, and 7.5 s, respectively. After the PDMS was
ast against the patterns and cured, it was gently
eeled away. In this way, we obtained transparent
amples of the elastomer ~H ' 3 mm! with binary
ratings ~1.8, 2.2, and 2.6 mm deep! embossed on the
urface.
The elastomer was placed between two glass

lates: one fixed and the other attached to a trans-
ational stage moving in the direction perpendicular
o the plane of the grating. For minimizing shear on
he grating during compression the plates were par-
llel aligned by the temporary placement of silver-
oated mirrors ~T ; 30%! on the glass plates. The
esulting assembly constituted a Fabry–Perot cavity
hat could be adjusted so that the multiple reflection
pots overlapped. Two collinear laser beams ~green
t 543.5 nm and red at 632.8 nm! were passed
hrough the sample. The intensities of the diffrac-
ion spots were monitored with silicon photodiode
etectors @Fig. 1~b!#.

4. Results and Discussion

The results are summarized in Figs. 3 and 4. The
measured intensities of the zero-order spots were
normalized to unity @maximum of the function I0~f!,
10 May 1999 y Vol. 38, No. 14 y APPLIED OPTICS 2999
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cf. Eq. ~5a!#, and the first-order intensities were then
plotted on the same scale. For 1.8- and 2.2-mm-deep
gratings the experimental curves of the intensity ver-
sus the compressive strain agree with the theoretical
ones for strains of as much as approximately 6%.
The agreement is poor for the 2.6-mm grating. This
result was expected because the high aspect ratio of
the grating lines ~1.3:1! will lead to buckling and
shear distortions of the lines that will cause the as-
sumption of a binary grating to break down ~our sim-
ple theory does not attempt to describe these
distortions!. The modulation of the intensity of light
was efficient ~;17 dB! for 1.8- and 2.2-mm gratings.
For these two gratings monochromatic light ~red or
green! can be directed selectively into either the zero
or the first diffraction order, depending on compres-
sive strain.

The relative wavelength-selectivity characteristics
of the device are presented in Fig. 4. For the 1.8-mm
grating and low compressive strains mostly red light
is filtered into the zero order. With increasing
strain the intensity of green light increases, reducing
the efficiency of filtering. In the first order, at a
compressive strain of approximately 5%, the inten-
sity of green light becomes greater than that of red
light, and at a compressive strain of approximately

ig. 3. Intensities of the zero and the first orders as functions of
he compressive strain e. The filled circles represent the zero
rder, and the open circles the first order results. The curves
how the theoretical values.
000 APPLIED OPTICS y Vol. 38, No. 14 y 10 May 1999
7% the opposite is true. For the 2.2-mm grating the
selectivity of diffraction into the zero order is better.
At 0% strain the intensity of green light is more than
60 times greater than that of red light ~18 dB!. For
a compressive strain of approximately 3% the oppo-
site is true: red light is now approximately 30 times
more intense than green ~14.8 dB!. Poor filtering
nto the first order ~7 dB! is observed at higher strains

~e.g., approximately 8%!. Filtering is not efficient
for a grating that is 2.6 mm thick ~a maximum of 10

B at 0% strain in the first order! or thicker.
The device can be used to filter wavelengths other

than those used in our study. Figure 5 shows plots
of the theoretical intensities of light filtered into the
zero order as a function of both the wavelength ~in the
visible! and the compressive strain. The 1.8-mm
grating @Fig. 5~a!# is selective not only for red–green,
but also for blue–green dicomponent light. The
2.2-mm grating, on the other hand, can differentiate
best between blue and red light. The selectivity for
these three hues could be useful in constructing red–
green–blue displays. In fact, one could envision a
display built from small elastomeric pixels that differ
in the depths of the gratings embossed on their sur-
faces. On selective compression of the pixels the

Fig. 4. Ratios of the intensities of the red to the green beams
~filled circles! and the green to the red beams ~open circles! when
diffracted into the zero and the first orders.
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transmitted image could be modulated. In addition,
topographies other than binary gratings might be
used to give more elaborate diffraction patterns.
For continuous tunable light sources the wavelength
selectivity is poor: On the basis of the calculations,
the bandwidth for low stresses would be ;100 nm, a
value that prohibits the use of our device as a con-
ventional bandpass filter.

The device described in this paper is easy to fabri-
cate, inexpensive, and durable. It can serve as a
pressure sensor, as a beam director, or as an optical
filter. One can tune its characteristics by changing
the dimensions ~or the properties! of the elastomeric

iffractive element. The performance of the device
s optimal when the stress is uniaxial in the direction
erpendicular to the plane of the grating. When the
spect ratio of the grating is high, shear stresses are
ard to control, and the spectral purity of the filtered

ight decreases.
Appendix A

A. Derivation of Equation ~3!

On substitution of y 5 x 2 mL into Eq. ~3!, we obtain

U~ f ! 5 (
m52Ny2

m5Ny2

exp~2i2pfmL!

3 *
2Ly2

Ly2

t~y!exp~2i2pfy!dy.

In the limit of very large N, we have

U~ f ! 5 lim
N3`

(
m52Ny2

m5Ny2

exp~2i2pfmL!

3 *
2Ly2

Ly2

t~y!exp~2i2pfy!dy,

and, by evaluating the sum, we obtain

U~ f ! 5 lim
N3`

sin@pfL~N 1 1!#

sin~pfL! *
2Ly2

Ly2

t~y!exp~2i2pfy!dy.

If we note that

lim
N3`

sin@pfL~N 1 1!#

sin~pfL!
5 (

m52`

m5` 1
L

dSf 2
m
LD ,

Eq. ~3! is obtained.

B. Derivation of Equations ~5!

We derive Eqs. ~5! as follows:

I0~f! 5
1
L2 F*

2Ly2

Ly2

t~y!dyGF*
2Ly2

Ly2

t*~y!dyG
5

1
L2 FL

2
1

L
2

exp~if!GFL
2

1
L
2

exp~2if!G
5

1
4

@2 1 exp~if! 1 exp~2if!#

5
1 1 cos f

2
,

I1~f! 5
1
L2 F*

2Ly2

Ly2

t~y!expS2i2py
L DdyG

3 F*
2Ly2

Ly2

t*~y!expSi2py
L DdyG

5
1
L2

L2

p2 @1 2 exp~if!#@1 2 exp~2if!#

5
1
p2 $2 2 @exp~if! 1 exp~2if!#%

5
2~1 2 cos f!

p2 .
Fig. 5. Plots of the theoretical intensities of light filtered into the
zero order as a function of both the wavelength ~in the visible! and
he compressive strain e for the 1.8-mm grating and the 2.2-mm
rating. The calculations were carried out by use of Eq. ~9a! with

a value for the constant of C 5 10.
10 May 1999 y Vol. 38, No. 14 y APPLIED OPTICS 3001
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C. Derivation of Proportion ~8!

For linear elastic materials a uniform axial stress in
the z direction Te produces a uniform axial strain ez
given by Te 5 Eez, where E is the Young’s modulus.

he z displacements throughout the elastomer are
iven by

dz 5 2
Tz

E
z,

where z 5 0 corresponds to the fixed glass plate.
Because

Df 5
2pDnDd

l
, Dd } dz, z 5 d0,

it follows that

Df }
2pDn

l
d0ez.

Because ez 5 DHyH, we can also write

Df }
2pDnd0DH

lH
.

We found the proportionality constant, which had a
value of 4.963, by fitting to one of the experimental
curves ~the reference curve in our experiments for the
.8-mm grating for zero-order green light!.

D. Derivation of Equations ~9a! and ~9b!

Let Dx be the expansion of a grating line during
compression. We assume that Dx is proportional to
the compressive strain, i.e., Dx 5 c1e. The transmis-
sion function for the compressed grating can be writ-
ten as

t~x! 5 5exp~if! for nL 2
Dx
2

, x , Sn 1
1
2DL 1

Dx
2

n 5 0, 61, 62, . . . , 6Ny2
1 otherwise

.

The intensity of the zero order calculated from Eq. ~4!
by use of this transmission function ~with y 5 x! is

I0,corr~f! 5
1
L2 U*

2Ly2

Ly2

t~y!dyU2

5
1
L2 USL

2
2 DxD 1 SL

2
1 DxDexp~if!U2

,

hich, after some algebra, leads to Eq. ~9a!:

I0,corr~f! 5
1 1 cos f

2
1 Ce2~1 2 cos f!,
002 APPLIED OPTICS y Vol. 38, No. 14 y 10 May 1999
here C 5 2c1 yL is a constant. The intensity of
the first order @Eq. ~9b!# is obtained by a similar pro-
edure ~with y 5 x 2 L!:

I1,corr~f! 5
1
L2 U*

2Ly2

Ly2

t~y!expS2p2iy
L DdyU2

5
1
L2 UiLp cosSpDx

L D@1 2 exp~if!#U2

5
2
p2 cos2@pe~Cy2!1y2#~1 2 cos f!.
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