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Modeling the Kinetics of Acylation of Insulin using a Recursive Method
for Solving the Systems of Coupled Differential Equations

Bartosz A. Grzybowski, Janelle R. Anderson, lan Colton, Scott T. Brittain, Eugene |. Shakhnovich, and
George M. Whitesides
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

ABSTRACT This paper describes a theoretical method for solving systems of coupled differential equations that describe
the kinetics of complicated reaction networks in which a molecule having multiple reaction sites reacts irreversibly with
multiple equivalents of a ligand (reagent). The members of the network differ in the number of equivalents of reagent that have
reacted, and in the patterns of sites of reaction. A recursive algorithm generates series, asymptotic, and average solutions
describing this kinetic scheme. This method was validated by successfully simulating the experimental data for the kinetics
of acylation of insulin.

INTRODUCTION

Even moderately complex kinetic systems can have comis, the concentration of the reageRtat timet). Nonlinear

plicated solutions. In fact, it is only for a limited number of systems of equations of this type do not have a known

systems (e.g., unimolecular systems, Schena that a closed-form solution. We will refer to this kinetic scheme as

closed-form solutions exist (Berberan-Santos and Martinhoa reagent-coupled unimolecular system (RCUS).

1990; Rodiguin and Rodiguina, 1960). In other instances, An RCUS provides a general model for the kinetics of

one can either approximate the answer by an infinite seriestreversible reactions of molecules having multiple recog-

or integrate the kinetic equations numerically. The seriesition sites with complementary ligands. Such networks of

solutions often diverge, and numerical integration may beeactions are common in biology: recations of multiple

time-consuming for complicated systems. ligands with a protein (Imai, 1983; Matthews and van Holde
In this paper, we present a recursive method that allows

us to find series, asymptotic, and approximate functional

solutions for a kinetic system consisting of an arbitrary ,,

number of starting materials, intermediates, and products

(X)), and a reagenR that is consumed irreversibly in the Xi(t) k, k, - k,)(X@®

sequence of conversions among them._ Upon reaction with alxo| |k, - - - Xa(1)

R, an intermediateX; converts irreversibly toX; with a w7 Sl

characteristic rate constaigt Rate constants are positive, if X ® |k Lk X_.(t)

- H H H n ol n n

they correspond to production of a given species (interme-

diate or product), and negative for its consumption. Thisp,

process is assumed to be first-order in both the reaetant

and the reagent, and second-order overall. Moreover, each Xi(t) ki 0 - 0 0)(x

of the X; can be a product of reaction of more than ote Xa(t) ky o 0| x

and can itself convert to more than one species. The reagent L R RO - - - 0 o0l :

itself, aside from reacting with the starting material and the dt % X k. 0l|X.®

intermediates (the loss of the reagent due to reactionXyith R() k"l K. " K 1

is described by rate constakt), can disappear (e.g., by o :

reaction with solvent or buffer, or by thermal decomposi-e¢.

tion), following first-order kinetics with rate constakg.

Such a network of reactions can be represented in matrix Xi(0) ky ke o k, 0) /x

notation as in Scheme i The important difference be- Xa(t) K,, 0 || Xu0)

tween this system and the unimolecular one (Scheajeit A R(t)-| - ol

that now the equations are coupled by R{8 function (that dt X, (1) k, - -k, O X, ®
R() k, k, - - kg 1
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1990; Mattevi, 1996; Monaco et al., 1978; Perutz, 1989) ancRECURSIVE METHOD FOR SOLVING RCUS

humoral immune response (many antibodies attaching to . . S .
P ( y g a"Phe procedure starts with solving a simplified version of the

antigen) (Tizard, 1984) are two prominent examples. An . AT :

RCSS 2:a(n ard. S us)ed " desgribe ont e OfF’protein_problem, withoutR(t) dependence; this simplification gives
. . . . . . . a unimolecular system, such as that in Schense The
ligand interactions in certain analytical techniques, such as

- . . “eigenvalues,, of the matrix of rate constants are ob-
ifﬂrr]uty (ija:\)/:”aw eligggptpre?sl(/'\lga (C|_r|1u etal., 1994; tained from Eqg. 1, in whiclJ is the unit matrix. For a given
uhrand vionnig, Ll etal, ). Here, we use Ol o0t P, @ particular solution is given by

theoretical model to simulate the data obtained by capillary

electrophoresis (Gao et al., 1995) from the formation of a detB — p,U) =0 (1)

charge ladder (Gao et al., 1994, 1996; Gao and Whitesides, _ o

1997) of insulin by acylation. X1 = An-explpn-t), i=1,...,n 2
Insulin is a protein (MW 5700) that is made up of two N

chains:a, consisting of 21 amino acid residues, g8d30 VS (ky— 80p) A =0 ©)

residues long. Insulin has three amino groups:dhehain

= i=1
N-terminal glycine residue, thg-chain N-terminal phenyl- et

alanine and a lysine group located at position 29 of the n

B-chain. Each of these amino groups can be acylated. Thus, X(t) = > A -expp - t) 4)
acylation gives rise to 7 possible acylation products i=1

(Scheme 2) in addition to native insulin (denoted N): insulin g t t

acylated at F (F), acylated at G (G), acylated at K (K), N o | R

acylated at both F and G (FG), at both F and K (FK), at both dt exp(J' R(t') dt ) B R(t)exp(f R(t) dt ) )

G and K (GK) and, finally, with all three amino groups 0 0

acylated (FGK). We studied acylation reactions of insulin  Eq. 2, and the values of coefficients,, are found from
with two acylating reagents: 1) thg-hydroxysuccinimide Eq. 3 in which$ is the delta function (Berberan-Santos and
ester of 5-carboxyfluorescein (F-NHS, Figuré\]l and 2)  Martinho, 1990). The general solution can be written as a
fluorescamine (FL, Figure B) (Stein et al., 1973). We linear combination of particular solutions (Eq. 4). Eq. 4 will
analyzed the results using our recursive method for solvinge useful in solving the original problem wif(t) depen-
the RCUS describing this system, and compared them tdence. Note that the following identity holds (Eg. 5).

the results obtained by numerical integration of kinetic We postulate the solution to the RCUS in the form of Eq.

equations. 6. This equation is, indeed, a solution to the RCUS, as can
kg
H,N NH, R — ROH

y NH2 \ki
e
SCHEME 2 The kinetic scheme for the acylation of

insulin. Insulin can be acylated by an acylating re- R NH,
HN
agent R on three different residues (F, G, K). Each HoN NHR 2 NH,
conversion is first order both in the substrate and in
the reagent. In addition, the reagent can hydrolyze NH, ks k¢

(the hydrolyzed product is inactive in the acylation NH;
reactions). This kinetic scheme can be described k“l ko
mathematically by an RCUS set of equations (Scheme

1B). Assuming the rate constants of the a(:ylationRHN

. . NHR RHN NH, HN NHR
reactions are independent of the extent and pattern of
the acylation of the protein (no cooperativity), the

number of independent rate constants can be reduced NH, NHR NHR

to four. In this casek, = ks = kg = ko, k» = k, = kio kiz
ko = kuy, andks = ks = k; = kyo \ lk“
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easily be proven (Eqg. 7). The solution given by Eq. 6 is stilleasily be solved numerically f&3..
incomplete, because it is written in termsR(t), which is

unknown. n n
— 2B explpn-S. —kS. = R0) — XG, (12
m=1

n X m=1
X0 =2 A exp{pi ) J R(t’) dt,) (6)  To find the asymptotic solution at infinity, we first wri®,
=1 0 as a sum ofyt) and a functiony(t) defined byy(t) = J{
R(t") dt’, and substitute fo&t) in Eq. 9 to obtain Eq. 13.
d. n t Becausegy(t) — 0 for large times, we have expp,y(t) =
dt X(t) = > Aipie R(t)exp(pi J R(t") dt’) (7) 0, and the asymptotic solution at infinity can be written as
i=1 0 in Eq. 14. By a similar method, the asymptote for> 0 is
found: in this cas&(t) = 0 and exptp,,St)) = 1, leading
n to Eg. 15.
=R(t)- [E(xja) : lqi)]. )
i1 dR(t)
g = 2{Cnr RO - exppnS)) - expl — p* V(0
We solve this problem recursively, substituting thgt) m=1
solutions into the equation f&(t) (Egs. 8 and 9). Using Eq. + ke - R(1) (13)
5, and introducingt) = [§ R(t") dt’ andB,,, = C./p,, We
can rewrite Eq. 9 in a slightly modified form (Eg. 10). n
Ro.(t) = R(O)-eXpKkR + E{Cm-eXp(pmSo)}> 't] (14)
dR(t) ! ~ m=1
i [an " Xi()- R(t)} + ke R() (8)
i=1

Reot) = R(0) - eXPKkR + E%) 't] (15)

m=1

dRH) " o
Gt = 2{CnRO-expgpn| RE) A" |+ ke RO); If the difference between limiting exponential asymptotes is
0

m-t small, it is reasonable to assume tRét) may be approxi-

©)  mated by an exponential for all times (average exponential,
R,ed- With this assumption, we impose the condition that

" its integral [§ R,,et) dt is equal to the integral of an exact

Crn= 2 ki An R(t) over this range, i.e., t§(t). Using a boundary condition

=1 att = 0, Eq. 16 is obtained:

d d R(0)

-dt[R(t) — > B explPm- St) — kR-S(t)] =0. (10) Ravex= R(0) * eXP( - sﬂ)‘ (16)
m=1

This' expression can be further 'si'mplified. to Eg. 11 byKINETICS OF ACYLATION OF INSULIN

making use of the boundary conditions at titne 0. Egs. ) _ )

9 and 11 will be used to find series, asymptotic, and apYVe used the mathematical model developed in the previous
proximate solutions foR(t) (note that ifR(t) is known, the ~ Section to study the kinetics of acylation of insulin (Scheme

entire RCUS problem is solved through Eq. 6). 2). Partial a_cqution of the amino groups qf insu_lin results in
a set of derivatives that can be resolved into eight peaks by

n n capillary electrophoresis based on differences in their values
_ . . — k- — _ of electrophoretic mobility at pH 6.8. These eight peaks
RO = 2By exilpn- SO) — ke SO = RO) Ele have all been assigned (Gao et al., 1995). We denote either
(11) of the two acylating agents used in the experiments (the
NHS ester of 5-carboxyfluoresceid][and flourescamine
The procedure for obtaining the series solution valid for[2]), asR (Fig 1). The acylation reactions are irreversible,
small values of time is quite lengthy, and we relegate it tofirst-order in both the reagent and an insulin derivative, and
the Appendix. To investigate the asymptotic behavior ofsecond-order overall. Moreover, we assume no cooperativ-
R(t), we first note that lim,. R() = 0, and thatt) ity among acylation reactions; that is, we assume there are
converges in infinity, i.e., lim,,, t) = S.. With these only three rate constants, so that, for example, the rate
conditions, Eq. 11 fot — <« simplifies to Eq. 12, which can constant for conversion of N to F is the same as for con-

m=1
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version of GK to FGK. It has been reported (Gilson andsolutions for R(t) were calculated; they are presented in
Honig, 1987), that for the ionic strength0.2 (as in our Table 2. In the next section, we will examine how accu-
experiments) and for amino groups separated-tip A, the  rately these equations fit the reality of the acylation of
changes in the pKa of an amino group upon acylation ofinsulin.
other amino groups of the same protein ar@.1. For the
amino groups of insulin, the changes in pKa are expected to
be even smaller, because the distances between these grolffisSULTS AND DISCUSSION
are larger Kope — Naws 21 A; Nope — Niew 25 A; and . .
Noiy — Niew 13 A) tha)lln the distances between the aminoGeneral properties of solutions
groups studied by Gilson and Honig. Noncooperativity as-We begin this section with the discussion of general prop-
sumption might be erroneous for proteins, in which theerties of series, asymptotic, and average exponential solu-
distances between the acylated amino groups are smalléons for the kinetic scheme of the acylation of insulin. The
than~10 A. Therefore, using Bronsted’s equation, one carmodel parameters (i.e., the observed rate conskasks, ks,
conservatively estimate that, by assuming no cooperativitykg, and the initial concentratiorig(0) andN(0)) are chosen
one introduces an error of at mostl0% in the values of such that they illustrate the important characteristics of the
rate constants. The nocooperativity assumption also greatlgolutions. Figure ZA shows an example of a series solution
reduces the computational complexity of the problem (withfor R(t) compared with the results of numerical integration
full cooperativity, there would be twelve independent rateof kinetic equations k;:k,:kg:kg = 4:3:2:0 andN(0) =
constants for insulin, instead of three). R(0)). With a fourth-order expansion, the series follows the
With these simplifying assumptions, the kinetic equationsnumerically integrated solution down t60.4R(0) and then
describing the system can be written in the form of andiverges to infinity. Expansions to orders higher than four
RCUS as in Eqg. 17 (the rate constakisk,, ks, andkg are  do not markedly improve the quality of the solution. They
positive numbers, and the minus sign denotes consumptionfluence, however, the way in which the series diverges:

of a given species). for even-order expansion§_.., R(t) = —«. For small and
N(t)
F(t)
G(1)
al KO
—| FG(t)
dt Fx)
GK(t)
FGK(t)
R()
— ki — ky — kg 0 0 0 0 0 0O 0 O N(t)
Kk, —ky — ks 0 0 0 0 0O 0 ©O F(t)
k, 0 —ky — kg 0 0 0 0O 0 ©O G(t)
Ks 0 0 -k—k 0 0 0O 0 O K(t)
=R()- 0 k, Kk, 0 —ks O 0O 0 ©O FG(t) (17)
0 Ks 0 Ky 0 K, 0O 0 O FK(t)
0 0 Ks K, 0 0 -k 0 O GK(t)
0 0 0 0 ks K, kk 0 O FGK(t)
—ki—k—k —k—k —ki—k —k-—-k -k -k -k 0 —kg 1

Notice that, in our insulin example, the rate constants are theomparable initial concentrations NfandR, and when the
observed ones, because only deprotonated neutral amimate of decomposition oR is comparable with the rate
groups react with the acylating reagent. The valuepgf constants of the interconversion reactioks &, k3), the

B,,, andC,, coefficients (defined in the previous section) for series solution assumes a very simple form. Because in such
this system of equations are given in Table 1. Using theseasekN(0) << kg, i = 1, 2, 3, we can approximat(t) by
coefficients, the series, asymptotic, and average exponentialsingle exponential (Eq. 18). Obviously, the concentrations
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respectively, are less than 1% of the numerically calculated
values.

Kinetics of acylation of insulin

Our study of the kinetics of acylation of insulin is an
example of a problem where the values of the rate constants
describing the kinetics of a complex reaction network are
unknown and must be decoded from available experimental
data (concentrations of intermediates at different times
and/or for different initial concentrations of reagents). The
2 procedure for finding the values of rate constants is con-
ceptually similar to finding a global minimum of a function
FIGURE 1 Molecular structures of the acylating reagents used in thegf many variables. First, a trial set of rate constarks,{,
experiments: 4) the NHS ester of S-carboxyfluorescein arfj luores- s chosen, and the concentrations of intermediates are cal-
camine. culated by substituting the trial set into the kinetic equations
and integrating them. Second, the calculated concentrations

of acylated derivatives of insulin can be well approximatedOf intermediates are compared to the experimental ones, and

1

by series. the difference between these two sets is quantified by some
function A({k} io)- In our study,A was defined as a square
R(t) = R(0) — ((ky + ky; + kg)N(0) + kg)R(O)t difference between simulater) @nd experimentalyj data,
EREINY i.e., =, (x — y;)% wheren is the number of data. The rate
(—MN(O)RZ(O) constants are then changed according to some algorithm,
2 (such as, e.g., grid search or Monte Carlo), and the proce-

N (ks + ko + kgN(O) + ka)*R(0)

dure is repeated. This cycle continues until the optimal set
) of rate constantsk} ;ima that minimizesA is found.

2 This procedure for finding the optimal rate constants

KZR(0) involves large numbers of calculations: even in a simple

t? 4+ - - = R(0) — ksR(O)t + th - case of only 10 kinetic equations and four rate constants, for
a grid search with~100 possible values for each rate
= R(0)exp(—kgt) (18)  constant, and for-10°-10" numerical integration steps for

each trial set i}, the total number of computer substi-

solutions only in the region, where the series solution fofiytions to be made is on the order of*300ur method of
R(t) is exact (Fig. 2 andD). solving an RCUS, makes it possible to reduce this number

The average exponential solutions are shown in Fig. Z2gignificantly. Specifically, because the method does not
B-D. They were obtained by first calculatiry. from Eq.  require numerical integration of kinetic equations, the CPU
12 using the bisection method (Press et al., 1996), and thefme needed for finding optimal rate constants is shorter by
using this value in Eq. 16. The maximum deviation of theseroughly the factor of the number of numerical integration
solutions from the results of numerical integration does nokteps 10°-10%). In the remaining part of this section, we
exceed 6%. The asymptotic solutions for small and largeyill illustrate the use of our theoretical method in two
times approximate the numerical curves even better thagxperiments involving acylation of insulin (Fig. 3).
average exponentials: the differences for small/large times, |n the first experiment, fluoresceiril)l was used as the
acylating agent. The reaction of fluorescein with insulin was
monitored as a function of time (Fig. 4). Two methods were
independently used to find the optimal values of rate con-
stants. In the first approach, the grid search in the space of

TABLE 1 Values of p,,, C,,, and B,, coefficients for the model
describing the kinetics of acylation of insulin

m Hn Cm Bm rate constants (100 possible values for each rate constant)
1 —Ki—ko—Ks 0 0 was performed, and the kinetic equations were integrated
2 —ke—ks 0 0 for each trial set i}, (time step 0.01 s). The procedure

i :tl::? 8 8 gave the ratio of the values of rate constant&,ks:ky =

5 ka : —ks - N(O) no) — 1.07:0.69:0.57:1.00, and the standard deviation per peak

6 —k, —k, - N(0) N©) (defined asoc = VA/n) between the simulated and the

7 —ky —ky - N(0) N(@©)  experimental data was calculated to be 0.0093. The total
8 0 0 0 time required for calculations (Pentium 233 MHz processor)
For definitions, see the Theory section. was~47 h. In the alternative approach based on our theo-
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TABLE 2 Functional forms of various solutions for the R(t) function for the kinetic scheme of acylation of insulin

657

S,

Functional Form

Series solution

Asymptote t— 0

Asymptote t— =«

Average Exponential

—N(0) - {exp(—k; - S.)+exp(—k, - S.)+exp(—ks - S.)} —kg * S. = RO)+k;+k,+ks
Solve numerically for S

2,
R(t) = R(0) + H, - RO)t + (Hz- RA(0) + HlTR(O)>t2 + (Hy"R(0) + 5+ Hp - Hy - R(0) + S HI- RODE + - - -
Ko+ Ky + Ky
K

Ro(t) = R(0) - exf(—N(0) * (ky + ko + ks) — kp)t]

where H;, = 6;; —

3
Re(t) = R(0) - expf(—kg — N(0) D knexp(—kpSH]

m=1
R0,

R(t) = R(0) - exp<f S

retical method, the numerical integration was not usedthe optimal rate constants. The standard deviation per peak
Instead, for eachi} ., the average-exponential solution between the simulated and the experimental dataovas

was found, and the concentrations of the intermediates wer@0094, and the difference between this simulation and that
calculated from it. This procedure gave the same values dbased on numerical integration was calculated tosbe

FIGURE 2 Performance of various
methods for finding solutions fdr(t)
and two intermediates, f( and
FG(), in the acylation of insulin. The
model rate constants weré énd B)
ki:ko:kg = 4:3:2:0 andN(0) = R(0)
and C andD) ky:ky:ks:kg = 4:3:2:0.5
andN(0) = 0.4R(0).

1.0
1.0 H
¢
\\ !
\ ;‘4— series solution average exponential solution
\ ! \
=) \ ! s \ ¥
ki ] Il \)
: \ 1] -
: = Q
& \ - &
~ ) = ? \
~~ & ~—
o) . Iy . . . -
E X-"  numerical integration <
\ N / & numerical
~ integration
~
~ by
o -~ -
0.0 = 0.0
15 0.15
D|
numerical average exponentialy
integration solution '-' i
y s ===
= =~ I £ v %~ numerical
< ~ [ . N
n } . - 71 i integration
o 3 Z y i
H ~ |
Z : * = 7 g
-~ ! average exponential ] (o i3 series solution
= ; solution = NG
series i =~ / < i
solution H i
i 3
i | %
0.0 0.0 >

time (arbitrary units) time (arbitrary units)
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log(ki rea) = BPK,, in which B is a parameter that correlates

G basicity with nucleophilicity and is assumed to be 0.8

(Jencks and Carriuolo, 1960), we arrive at Eq. 19 relating

N the pK, of an amino group with the observed rate constant
of the acylation of this group. TheK, of Phe{ = 1) and

FG Gly(i = 2) groups of insulin have

GK
FK 103Ka

FGK
K| = 1O)Ka_pH+11 (lg)

intensity of fluorescence
o]
2

4 5 6 previously been experimentally determined from the pH
dependence of the electrophoretic mobilities, and the extent
migration time (min) of acylation of these groups with acetic anhydride (Gao et
al., 1995) to be 8.4 and 7.1, respectively. Using thaeisg

FIGURE 3 Example of an electropherogram for the reaction of insulin ;
values, and a value of 10.0 for L 3) (Matthews and
(1.5 ul 260 uM buffer solution) with flourescamine (g4l 100 mM buffer ysé ) (

solution). The products of the reaction were analyzed by capillary electroYan HOIde' 1990)' and th? value Qf pH 6.8 for the
phoresis in a capillary of 52m (internal diameter) and 77 cm (length). A @cylation reaction, the relative magnitudes of the observed

voltage of 30 kV was applied to the ends of the capillary. rate constants ard;:k;;k; = 2.5 (£0.7):2.0 (¢0.4):1
(%0.25). The deviations in the rate constants were estimated
assuming uncertainty in the values pK, of 0.5. The
relative magnitudes of the observed rate constants in our

0.00038. The computer time required for calculations waEXPeriments fall into these uncertainty limits.
only ~50 min.

In the sgcond experlme_nt,_fluorescamlﬁaa\(/as used a8  GONCLUSIONS
the acylating reagent. This time, the mixture of underivat-
ized protein and the acylating reagent was allowed to readn this paper, we presented a recursive method for solving
until stable concentrations of all the derivatives werereagent-coupled unimolecular systems: series, asymptotic,
reached (when the acylating agent disappeared, and ti@nd average solutions were found. We validated the theory
reactions came to a halt:2 h). The experiment was re- using experimental data for the acylation of insulin. Because
peated for 6 different initial amounts of fluorescamine (Fig.the algorithms presented in this study are of general nature
5). As before, two theoretical approaches were taken to fit tgPut limited to irreversible reactions), they can be used to
the experimental data. Using the grid search method (108tudy kinetics of more complicated systems, in which mol-
possible values for every rate constant) with numericaP(fUIes w[th multlple recognition (or reaction) sites interact
integration (5000 steps for each set of data), the ratios of th@/!th multiple equivalents of reagent. The calculations per-
rate constants were found to ek, ksks = 2.08:2.48: formed using the method are fast, because it does not
0.88:1.00. The calculations took392 h3 In the approach require numerical integration of kinetic equations. Al-
based on our theoretical method, numerical integration wal'©ugh. in this study, we assumed noncooperativity of ac-

: : : . lation reactions, this assumption is not necessary: the
replaced by calculating a long-time asymptotic solutlon,y ’ : ) .
P y 9 9 ymp method can solve an RCUS of an arbitrary dimension.

giving the same values of the optimal rate constants. Thi?Nhen the rate constants are to be found from the experi-

time, however, the computer time required was much .
. : . mental data, our method can accelerate the calculations, but
shorter (-10 min). The difference between the two simu-

lated set Z 0.00027. and that betw th . cannot circumvent the problems associated with common
ated sets was = 0. » and that between e expert- .o 5 cpy algorithms (e.g., Monte Carlo): for large sets of

mentall data;sgt and-tr:]e set smyla{tgd using long-term 3fhdependent rate constants, finding the global minimum
ymptotic solution (without numerical integration) was= (best fit) becomes exceedingly complicated and, if the un-

0.028. certainties in the experimental data are large, might yield
To assess the reasonableness of our results, the relat'ﬁ?eaningless solutions.

magnitudes of the observed rate constants obtained by our

method for the acylation of insulin were compared with

those estimated from the Bronsted equation. An observegXPERIMENTAL
rate constank;, i = 1, 2, 3 can be related to the real rate
constant for the acylation reaction by a simple relatips

0k yue In Which 6;, expresses the fraction of a respective A Beckman P/ACE system 5500 capillary electrophoresis
amino group in unionized formf, = [RNH,];//([RNH,]; + system was used in the experiments. The capillary tubing
[RNHZ1) = (10°KaPH 1 1)~ Using the Bronsted equation (Polymicro Technologie, Inc., Phoenix, AZ) was of un-

Equipment
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60 17 min 29 min ]

2
]
00,

3
R

60 40 min 56 min |

FIGURE 4 Schematic electrophero-
grams of acylated derivatives of insu-
lin for different values of time. In this
study, fluorescein was used as the
acylating agent. The hatched bars cor-
respond to experimental data, and the
solid bars were generated using an
average-exponential method.

69 min 85 min

60- 99 min 112 min

Amount of a derivative relative to the initial concentration of native insulin (%)

N F G K FG FK GK FGK F G K FG FK GK FGK

coated fused silica with an internal diameter of a®. The (Eugene, OR), and fluorescamine was purchased from Al-
samples (8 nl) were introduced into the capillary by adrich (Milwaukee, WI). Stock solutions of insulin (1.5 mg/
positive pressure injection. A voltage of 30 kV was appliedml, 260 uM) were prepared by dissolving the protein in pH
to the capillary. The detection of the derivatized protein wasl2 water and then diluting this solution with an equal
done by monitoring the UV absorbance at 214 nm. volume of potassium phosphate buffer (100 mM, pH 6.8).

Reagents Procedures

All chemicals were of analytical grade and were used with-1) Acylation with Fluorescamine. Different volumes of 100
out further purification. Bovine pancreatic insulin was pur- mM buffer solution of Fluorescamine (2, 4, 6, 8, 10, and 12
chased from Sigma (St. Louis, MO). 5-carboxyfluoresceinul) were added to six samples of 1/ insulin buffer
succimidyl ester was purchased from Molecular Probesolution (260uM). The mixtures were allowed to react until

Biophysical Journal 78(2) 652-661
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FIGURE 5 Set of schematic elec-
tropherograms of acylated derivatives
of insulin for different initial amounts
of the acylating agent (fluorescam-
ine). The hatched bars correspond to
experimental data, and the solid bars
were generated using long-time as-
ymptotic method.
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stable concentrations of intermediates were reackhedh),
and were subsequently analyzed by capillary electrophore-

sis. 2) Acylation with Fluorescein. Buffer solution of Flu- All the computer codes were implemented in C language.

orescein (7.5l, 100 mM) was mixed with 50@ul of buffer

10 vL

N F G K FG FK GKFGK

4pL

8§ uL

K FG FK GKFGK

Computational Methods

12 ulL

K FG FK GKFGK

Numerical integration of kinetic equations was performed
insulin solution (260wl). The reaction was quenched at using a fourth-order Runge—Kutta method. Optimization of
specified times (up to 112 min) with fivefold excess of the values of rate constants was achieved using a grid search

hydroxylamine. The samples were analyzed by capillaryalgorithm. The equation fd8, was solved using a bisection

electrophoresis.
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APPENDIX

To derive a series solution f&(t) for small values of times, we expand the

exponentials in Eq. 11 in the power series

R(t) — EBm-{1+ pm-S(t)+%-Sz(t)+ .. .}— ks * S(1)

m=1

=R(0) — D.B,. (Al)

m=1
Grouping the terms at equal powers$f) and introducing
n oA
P * Bm
Hi = Z{ 0 (T ourke

m=1

leads to Eq. A2. NextX(t) is expanded in a power serié®(t) = 2;_,fz-
t*. From

R(t) — 2H; - S(t) = R(0),

(A2)
i=1
the definition oft), we obtain
Sit) = xR(t’) dt’ = ’ if Stz ldt = i—fz T
z z+1
0 o \z=0 z=0
(A3)
Substitution of A3 into A2 leads to
< z S S fZ z+1
2h = ZH 2 P - RO) = 0. (Ad)
z=0 i=1 z=0

After rearranging the terms and equating coefficients at all powetgmf
zero, the series expansion coefficiefifsare obtained. The first four of
them are given in A5:

f, = R(0) (A5)
fy = H,; - R(0)
f, = H,- R(0) +H1'TR(O)

4 1
f3: H3'R3(O) +§'H2'H1'R2(O) +6H§'R(O)
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