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ABSTRACT This paper describes a theoretical method for solving systems of coupled differential equations that describe
the kinetics of complicated reaction networks in which a molecule having multiple reaction sites reacts irreversibly with
multiple equivalents of a ligand (reagent). The members of the network differ in the number of equivalents of reagent that have
reacted, and in the patterns of sites of reaction. A recursive algorithm generates series, asymptotic, and average solutions
describing this kinetic scheme. This method was validated by successfully simulating the experimental data for the kinetics
of acylation of insulin.

INTRODUCTION

Even moderately complex kinetic systems can have com-
plicated solutions. In fact, it is only for a limited number of
systems (e.g., unimolecular systems, Scheme 1a) that a
closed-form solutions exist (Berberan-Santos and Martinho,
1990; Rodiguin and Rodiguina, 1960). In other instances,
one can either approximate the answer by an infinite series,
or integrate the kinetic equations numerically. The series
solutions often diverge, and numerical integration may be
time-consuming for complicated systems.

In this paper, we present a recursive method that allows
us to find series, asymptotic, and approximate functional
solutions for a kinetic system consisting of an arbitrary
number of starting materials, intermediates, and products
(Xi), and a reagentR that is consumed irreversibly in the
sequence of conversions among them. Upon reaction with
R, an intermediateXi converts irreversibly toXj with a
characteristic rate constantkij . Rate constants are positive, if
they correspond to production of a given species (interme-
diate or product), and negative for its consumption. This
process is assumed to be first-order in both the reactantXi

and the reagent, and second-order overall. Moreover, each
of the Xj can be a product of reaction of more than oneXi

and can itself convert to more than one species. The reagent
itself, aside from reacting with the starting material and the
intermediates (the loss of the reagent due to reaction withXi

is described by rate constantkri), can disappear (e.g., by
reaction with solvent or buffer, or by thermal decomposi-
tion), following first-order kinetics with rate constantkR.
Such a network of reactions can be represented in matrix
notation as in Scheme 1b. The important difference be-
tween this system and the unimolecular one (Scheme 1a), is
that now the equations are coupled by theR(t) function (that

is, the concentration of the reagentR at time t). Nonlinear
systems of equations of this type do not have a known
closed-form solution. We will refer to this kinetic scheme as
a reagent-coupled unimolecular system (RCUS).

An RCUS provides a general model for the kinetics of
irreversible reactions of molecules having multiple recog-
nition sites with complementary ligands. Such networks of
reactions are common in biology: recations of multiple
ligands with a protein (Imai, 1983; Matthews and van Holde
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SCHEME 1 The system of equations in (A) describes the kinetics of a
unimolecular system; it has an analytical solution. In (B), the equations of
the system are coupled by theR(t) term (the concentration of the reagent).
The system is nonlinear and cannot be solved analytically. Because the
reactions are assumed irreversible, the entries in the matrix above the
diagonal are all zero. The recursive method developed in the paper can also
solve the more general case (C) which, however, is physically unrealistic.
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1990; Mattevi, 1996; Monaco et al., 1978; Perutz, 1989) and
humoral immune response (many antibodies attaching to an
antigen) (Tizard, 1984) are two prominent examples. An
RCUS can also be used to describe kinetics of protein–
ligand interactions in certain analytical techniques, such as
affinity capillary electrophoresis (ACE) (Chu et al., 1994;
Kuhr and Monnig, 1992; Liu et al., 1994). Here, we use our
theoretical model to simulate the data obtained by capillary
electrophoresis (Gao et al., 1995) from the formation of a
charge ladder (Gao et al., 1994, 1996; Gao and Whitesides,
1997) of insulin by acylation.

Insulin is a protein (MW 5700) that is made up of two
chains:a, consisting of 21 amino acid residues, andb, 30
residues long. Insulin has three amino groups: thea-chain
N-terminal glycine residue, theb-chain N-terminal phenyl-
alanine and a lysine group located at position 29 of the
b-chain. Each of these amino groups can be acylated. Thus,
acylation gives rise to 7 possible acylation products
(Scheme 2) in addition to native insulin (denoted N): insulin
acylated at F (F), acylated at G (G), acylated at K (K),
acylated at both F and G (FG), at both F and K (FK), at both
G and K (GK) and, finally, with all three amino groups
acylated (FGK). We studied acylation reactions of insulin
with two acylating reagents: 1) theN-hydroxysuccinimide
ester of 5-carboxyfluorescein (F-NHS, Figure 1A), and 2)
fluorescamine (FL, Figure 1B) (Stein et al., 1973). We
analyzed the results using our recursive method for solving
the RCUS describing this system, and compared them to
the results obtained by numerical integration of kinetic
equations.

RECURSIVE METHOD FOR SOLVING RCUS

The procedure starts with solving a simplified version of the
problem, withoutR(t) dependence; this simplification gives
a unimolecular system, such as that in Scheme 1a. The
eigenvaluespm of the matrix of rate constantsK are ob-
tained from Eq. 1, in whichU is the unit matrix. For a given
root pm, a particular solution is given by

det(B 2 pmU) 5 0 (1)

xi~t! 5 Aim z exp~pm z t!, i 5 1, . . . ,n (2)

;

h51. . .n

O
i51

n

~kih 2 dihpm! z Aim 5 0 (3)

Xj~t! 5 O
i51

n

Aji z exp~pi z t! (4)

d

dt
expSE

0

t

R~t9! dt9D 5 R~t!expSE
0

t

R~t9! dt9D (5)

Eq. 2, and the values of coefficientsAim are found from
Eq. 3 in whichd is the delta function (Berberan-Santos and
Martinho, 1990). The general solution can be written as a
linear combination of particular solutions (Eq. 4). Eq. 4 will
be useful in solving the original problem withR(t) depen-
dence. Note that the following identity holds (Eq. 5).

We postulate the solution to the RCUS in the form of Eq.
6. This equation is, indeed, a solution to the RCUS, as can

SCHEME 2 The kinetic scheme for the acylation of
insulin. Insulin can be acylated by an acylating re-
agent R on three different residues (F, G, K). Each
conversion is first order both in the substrate and in
the reagent. In addition, the reagent can hydrolyze
(the hydrolyzed product is inactive in the acylation
reactions). This kinetic scheme can be described
mathematically by an RCUS set of equations (Scheme
1 B). Assuming the rate constants of the acylation
reactions are independent of the extent and pattern of
the acylation of the protein (no cooperativity), the
number of independent rate constants can be reduced
to four. In this case,k1 5 k6 5 k8 5 k12, k2 5 k4 5
k9 5 k11, andk3 5 k5 5 k7 5 k10.
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easily be proven (Eq. 7). The solution given by Eq. 6 is still
incomplete, because it is written in terms ofR(t), which is
unknown.

X̃j~t! 5 O
i51

n

Aji z expSpi z E
0

t

R~t9! dt9D (6)

d

dt
X̃j~t! 5 O

i51

n

Aji z pi z R~t!expSpi z E
0

t

R~t9! dt9D (7)

5 R~t! z HO
i51

n

~X̃j~t! z kji!J.
We solve this problem recursively, substituting theX̃i(t)
solutions into the equation forR(t) (Eqs. 8 and 9). Using Eq.
5, and introducingS(t) 5 *0

t R(t9) dt9 andBm 5 Cm/pm, we
can rewrite Eq. 9 in a slightly modified form (Eq. 10).

dR~t!

dt
5 HO

i51

n

kri z X̃i~t! z R~t!J 1 kR z R~t! (8)

dR~t!

dt
5 O

m51

n HCm z R~t! z expSpmE
0

t

R~t9! dt9DJ 1 kR z R~t!;

(9)

Cm 5 O
i51

n

kri z Aim

z
d

dtHR~t! 2 O
m51

n

Bm z exp~pm z S~t!! 2 kR z S~t!J 5 0. (10)

This expression can be further simplified to Eq. 11 by
making use of the boundary conditions at timet 5 0. Eqs.
9 and 11 will be used to find series, asymptotic, and ap-
proximate solutions forR(t) (note that ifR(t) is known, the
entire RCUS problem is solved through Eq. 6).

R~t! 2 O
m51

n

Bm z exp~pm z S~t!! 2 kR z S~t! 5 R~0! 2 O
m51

n

Bm

(11)

The procedure for obtaining the series solution valid for
small values of time is quite lengthy, and we relegate it to
the Appendix. To investigate the asymptotic behavior of
R(t), we first note that limt3` R(t) 5 0, and thatS(t)
converges in infinity, i.e., limt3` S(t) 5 S̀ . With these
conditions, Eq. 11 fort3 ` simplifies to Eq. 12, which can

easily be solved numerically forS̀ .

2 O
m51

n

Bm z exp~pm z S̀ 2 kRS̀ 5 R~0! 2 O
m51

n

Gm. (12)

To find the asymptotic solution at infinity, we first writeS̀
as a sum ofS(t) and a functiony(t) defined byy(t) 5 *t

`

R(t9) dt9, and substitute forS(t) in Eq. 9 to obtain Eq. 13.
Becausey(t)3 0 for large times, we have exp(2pmy(t)) >
0, and the asymptotic solution at infinity can be written as
in Eq. 14. By a similar method, the asymptote fort 3 0 is
found: in this caseS(t) > 0 and exp(2pmS(t)) > 1, leading
to Eq. 15.

dR~t!

dt
5 O

m51

n

$Cm z R~t! z exp~pmS̀ ! z exp~ 2 pm z y~t!%

1 kR z R~t! (13)

Rt3`~t! 5 R~0! z expFSkR 1 O
m51

n

$Cm z exp~pmS̀ !%D z tG (14)

Rt30~t! 5 R~0! z expFSkR 1 O
m51

n

CmD z tG (15)

If the difference between limiting exponential asymptotes is
small, it is reasonable to assume thatR(t) may be approxi-
mated by an exponential for all times (average exponential,
Ravex). With this assumption, we impose the condition that
its integral*0

` Ravex(t) dt is equal to the integral of an exact
R(t) over this range, i.e., toS(t). Using a boundary condition
at t 5 0, Eq. 16 is obtained:

Ravex5 R~0! z expS 2
R~0!

S̀
tD. (16)

KINETICS OF ACYLATION OF INSULIN

We used the mathematical model developed in the previous
section to study the kinetics of acylation of insulin (Scheme
2). Partial acylation of the amino groups of insulin results in
a set of derivatives that can be resolved into eight peaks by
capillary electrophoresis based on differences in their values
of electrophoretic mobility at pH 6.8. These eight peaks
have all been assigned (Gao et al., 1995). We denote either
of the two acylating agents used in the experiments (the
NHS ester of 5-carboxyfluorescein [1] and flourescamine
[2]), as R (Fig 1). The acylation reactions are irreversible,
first-order in both the reagent and an insulin derivative, and
second-order overall. Moreover, we assume no cooperativ-
ity among acylation reactions; that is, we assume there are
only three rate constants, so that, for example, the rate
constant for conversion of N to F is the same as for con-
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version of GK to FGK. It has been reported (Gilson and
Honig, 1987), that for the ionic strength;0.2 (as in our
experiments) and for amino groups separated by;10 Å, the
changes in the pKa of an amino group upon acylation of
other amino groups of the same protein are;0.1. For the
amino groups of insulin, the changes in pKa are expected to
be even smaller, because the distances between these groups
are larger (NPhe 2 NGly, 21 Å; NPhe 2 NLeu, 25 Å; and
NGly 2 NLeu, 13 Å) than the distances between the amino
groups studied by Gilson and Honig. Noncooperativity as-
sumption might be erroneous for proteins, in which the
distances between the acylated amino groups are smaller
than;10 Å. Therefore, using Bronsted’s equation, one can
conservatively estimate that, by assuming no cooperativity,
one introduces an error of at most;10% in the values of
rate constants. The nocooperativity assumption also greatly
reduces the computational complexity of the problem (with
full cooperativity, there would be twelve independent rate
constants for insulin, instead of three).

With these simplifying assumptions, the kinetic equations
describing the system can be written in the form of an
RCUS as in Eq. 17 (the rate constantsk1, k2, k3, andkR are
positive numbers, and the minus sign denotes consumption
of a given species).

Notice that, in our insulin example, the rate constants are the
observed ones, because only deprotonated neutral amino
groups react with the acylating reagent. The values ofpm,
Bm, andCm coefficients (defined in the previous section) for
this system of equations are given in Table 1. Using these
coefficients, the series, asymptotic, and average exponential

solutions for R(t) were calculated; they are presented in
Table 2. In the next section, we will examine how accu-
rately these equations fit the reality of the acylation of
insulin.

RESULTS AND DISCUSSION

General properties of solutions

We begin this section with the discussion of general prop-
erties of series, asymptotic, and average exponential solu-
tions for the kinetic scheme of the acylation of insulin. The
model parameters (i.e., the observed rate constantsk1, k2, k3,
kR, and the initial concentrationsR(0) andN(0)) are chosen
such that they illustrate the important characteristics of the
solutions. Figure 2A shows an example of a series solution
for R(t) compared with the results of numerical integration
of kinetic equations (k1:k2:k3:kR 5 4:3:2:0 andN(0) 5
R(0)). With a fourth-order expansion, the series follows the
numerically integrated solution down to;0.4R(0) and then
diverges to infinity. Expansions to orders higher than four
do not markedly improve the quality of the solution. They
influence, however, the way in which the series diverges:
for even-order expansions)t3` R(t) 5 2`. For small and

comparable initial concentrations ofN andR, and when the
rate of decomposition ofR is comparable with the rate
constants of the interconversion reactions (k1, k2, k3), the
series solution assumes a very simple form. Because in such
case,kiN(0) ,, kR, i 5 1, 2, 3, we can approximateR(t) by
a single exponential (Eq. 18). Obviously, the concentrations

d

dt1
N~t!
F~t!
G~t!
K~t!
FG~t!
FK~t!
GK~t!
FGK~t!

R~t!

2
5 R~t! z 1

2 k1 2 k2 2 k3

k1

k2

k3

0
0
0
0

2 k1 2 k2 2 k3

0
2 k2 2 k3

0
0
k2

k3

0
0

2 k2 2 k3

0
0

2 k1 2 k3

0
k1

0
k3

0
2 k1 2 k3

0
0
0

2 k1 2 k2

0
k1

k2

0
2 k1 2 k2

0
0
0
0

2 k3

0
0
k3

2 k3

0
0
0
0
0
k2

0
k2

2 k2

0
0
0
0
0
0

2 k1

k1

2 k1

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

2 kR

2 z 1
N~t!
F~t!
G~t!
K~t!
FG~t!
FK~t!
GK~t!
FGK~t!

1

2 (17)
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of acylated derivatives of insulin can be well approximated
by series.

R~t! 5 R~0! 2 ~~k1 1 k21 1 k3!N~0! 1 kR!R~0!t

1 S2 k1
2 1 k2

2 1 k3
2

2
N~0!R2~0!

1
~~k1 1 k2 1 k3!N~0! 1 kR)2zR(0)

2 D
t2 1 · · ·< R~0! 2 kRR~0!t 1

kR
2R~0!

2
t2 2 · · ·

5 R~0!exp~2kRt! (18)

solutions only in the region, where the series solution for
R(t) is exact (Fig. 2C andD).

The average exponential solutions are shown in Fig. 2,
B–D. They were obtained by first calculatingS̀ from Eq.
12 using the bisection method (Press et al., 1996), and then
using this value in Eq. 16. The maximum deviation of these
solutions from the results of numerical integration does not
exceed 6%. The asymptotic solutions for small and large
times approximate the numerical curves even better than
average exponentials: the differences for small/large times,

respectively, are less than 1% of the numerically calculated
values.

Kinetics of acylation of insulin

Our study of the kinetics of acylation of insulin is an
example of a problem where the values of the rate constants
describing the kinetics of a complex reaction network are
unknown and must be decoded from available experimental
data (concentrations of intermediates at different times
and/or for different initial concentrations of reagents). The
procedure for finding the values of rate constants is con-
ceptually similar to finding a global minimum of a function
of many variables. First, a trial set of rate constants {k} trial

is chosen, and the concentrations of intermediates are cal-
culated by substituting the trial set into the kinetic equations
and integrating them. Second, the calculated concentrations
of intermediates are compared to the experimental ones, and
the difference between these two sets is quantified by some
functionD({ k} trial). In our study,D was defined as a square
difference between simulated (x) and experimental (y) data,
i.e.,¥i51

n (xi 2 yi)
2, wheren is the number of data. The rate

constants are then changed according to some algorithm,
(such as, e.g., grid search or Monte Carlo), and the proce-
dure is repeated. This cycle continues until the optimal set
of rate constants {k} optimal that minimizesD is found.

This procedure for finding the optimal rate constants
involves large numbers of calculations: even in a simple
case of only 10 kinetic equations and four rate constants, for
a grid search with;100 possible values for each rate
constant, and for;103–104 numerical integration steps for
each trial set {k} trial, the total number of computer substi-
tutions to be made is on the order of 1013. Our method of
solving an RCUS, makes it possible to reduce this number
significantly. Specifically, because the method does not
require numerical integration of kinetic equations, the CPU
time needed for finding optimal rate constants is shorter by
roughly the factor of the number of numerical integration
steps (;103–104). In the remaining part of this section, we
will illustrate the use of our theoretical method in two
experiments involving acylation of insulin (Fig. 3).

In the first experiment, fluorescein (1) was used as the
acylating agent. The reaction of fluorescein with insulin was
monitored as a function of time (Fig. 4). Two methods were
independently used to find the optimal values of rate con-
stants. In the first approach, the grid search in the space of
rate constants (100 possible values for each rate constant)
was performed, and the kinetic equations were integrated
for each trial set {k} trial (time step 0.01 s). The procedure
gave the ratio of the values of rate constantsk1:k2k3:kR 5
1.07:0.69:0.57:1.00, and the standard deviation per peaks
(defined ass 5 =D/n) between the simulated and the
experimental data was calculated to be 0.0093. The total
time required for calculations (Pentium 233 MHz processor)
was;47 h. In the alternative approach based on our theo-

FIGURE 1 Molecular structures of the acylating reagents used in the
experiments: (1) the NHS ester of 5-carboxyfluorescein and (2) fluores-
camine.

TABLE 1 Values of pm, Cm, and Bm coefficients for the model
describing the kinetics of acylation of insulin

m pm Cm Bm

1 2k12k22k3 0 0
2 2k22k3 0 0
3 2k12k3 0 0
4 2k12k2 0 0
5 2k3 2k3 z N(0) N(0)
6 2k2 2k2 z N(0) N(0)
7 2k1 2k1 z N(0) N(0)
8 0 0 0

For definitions, see the Theory section.
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retical method, the numerical integration was not used.
Instead, for each {k} trial, the average-exponential solution
was found, and the concentrations of the intermediates were
calculated from it. This procedure gave the same values of

the optimal rate constants. The standard deviation per peak
between the simulated and the experimental data wass 5
0.0094, and the difference between this simulation and that
based on numerical integration was calculated to bes 5

TABLE 2 Functional forms of various solutions for the R(t) function for the kinetic scheme of acylation of insulin

Functional Form

S̀ 2N(0) z {exp(2k1 z S̀ )1exp(2k2 z S̀ )1exp(2k3 z S̀ )} 2kR z S̀ 5 R(0)1k11k21k3

Solve numerically for S̀

Series solution
R~t! 5 R~0! 1 H1 z R~0!t 1 SH2 z R2~0! 1

H1
2 z R~0!

2 Dt2 1 ~H3 z R3~0! 1 4

3
z H2 z H1 z R2~0! 1 1

6
H1

3 z R~0!!t3 1 · · ·

where Hi 5 d1,i 2
k1

i 1 k2
i 1 k3

i

k!

Asymptote t3 0 Rt30~t! 5 R~0! z exp@~2N~0! z ~k1 1 k2 1 k3! 2 kR!t#

Asymptote t3 `

Rt3`~t! 5 R~0! z exp@~2kR 2 N~0!O
m51

3

kmexp~2kmS̀ !!t#

Average Exponential
R~t! 5 R~0! z expS2

R~0!

S̀
z tD

FIGURE 2 Performance of various
methods for finding solutions forR(t)
and two intermediates, F(t) and
FG(t), in the acylation of insulin. The
model rate constants were (A andB)
k1:k2:kR 5 4:3:2:0 andN(0) 5 R(0)
and (C andD) k1:k2:k3:kR 5 4:3:2:0.5
andN(0) 5 0.4R(0).
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0.00038. The computer time required for calculations was
only ;50 min.

In the second experiment, fluorescamine (2) was used as
the acylating reagent. This time, the mixture of underivat-
ized protein and the acylating reagent was allowed to react
until stable concentrations of all the derivatives were
reached (when the acylating agent disappeared, and the
reactions came to a halt;;2 h). The experiment was re-
peated for 6 different initial amounts of fluorescamine (Fig.
5). As before, two theoretical approaches were taken to fit to
the experimental data. Using the grid search method (100
possible values for every rate constant) with numerical
integration (5000 steps for each set of data), the ratios of the
rate constants were found to bek1:k2:k3:kR 5 2.08:2.48:
0.88:1.00. The calculations took;39 h. In the approach
based on our theoretical method, numerical integration was
replaced by calculating a long-time asymptotic solution,
giving the same values of the optimal rate constants. This
time, however, the computer time required was much
shorter (;10 min). The difference between the two simu-
lated sets wass 5 0.00027, and that between the experi-
mental dataset and the set simulated using long-term as-
ymptotic solution (without numerical integration) wass 5
0.028.

To assess the reasonableness of our results, the relative
magnitudes of the observed rate constants obtained by our
method for the acylation of insulin were compared with
those estimated from the Bronsted equation. An observed
rate constantki, i 5 1, 2, 3 can be related to the real rate
constant for the acylation reaction by a simple relationki 5
uiki,true, in which ui, expresses the fraction of a respective
amino group in unionized form,ui 5 [RNH2]i/([RNH2]i 1
[RNH3

1]i) 5 (10pKa-pH1 1)21. Using the Bronsted equation

log(ki,real) 5 bpKa, in whichb is a parameter that correlates
basicity with nucleophilicity and is assumed to be 0.8
(Jencks and Carriuolo, 1960), we arrive at Eq. 19 relating
the pKa of an amino group with the observed rate constant
of the acylation of this group. ThepKa of Phe(i 5 1) and
Gly(i 5 2) groups of insulin have

KI 5
10pKa

10pKa2pH11
, (19)

previously been experimentally determined from the pH
dependence of the electrophoretic mobilities, and the extent
of acylation of these groups with acetic anhydride (Gao et
al., 1995) to be 8.4 and 7.1, respectively. Using thesepKa

values, and a value of 10.0 for Lys(i 5 3) (Matthews and
van Holde, 1990), and the value of pH5 6.8 for the
acylation reaction, the relative magnitudes of the observed
rate constants arek1:k2:k3 5 2.5 (60.7):2.0 (60.4):1
(60.25). The deviations in the rate constants were estimated
assuming uncertainty in the values ofpKa of 0.5. The
relative magnitudes of the observed rate constants in our
experiments fall into these uncertainty limits.

CONCLUSIONS

In this paper, we presented a recursive method for solving
reagent-coupled unimolecular systems: series, asymptotic,
and average solutions were found. We validated the theory
using experimental data for the acylation of insulin. Because
the algorithms presented in this study are of general nature
(but limited to irreversible reactions), they can be used to
study kinetics of more complicated systems, in which mol-
ecules with multiple recognition (or reaction) sites interact
with multiple equivalents of reagent. The calculations per-
formed using the method are fast, because it does not
require numerical integration of kinetic equations. Al-
though, in this study, we assumed noncooperativity of ac-
ylation reactions, this assumption is not necessary: the
method can solve an RCUS of an arbitrary dimension.
When the rate constants are to be found from the experi-
mental data, our method can accelerate the calculations, but
cannot circumvent the problems associated with common
search algorithms (e.g., Monte Carlo): for large sets of
independent rate constants, finding the global minimum
(best fit) becomes exceedingly complicated and, if the un-
certainties in the experimental data are large, might yield
meaningless solutions.

EXPERIMENTAL

Equipment

A Beckman P/ACE system 5500 capillary electrophoresis
system was used in the experiments. The capillary tubing
(Polymicro Technologie, Inc., Phoenix, AZ) was of un-

FIGURE 3 Example of an electropherogram for the reaction of insulin
(1.5 ml 260 mM buffer solution) with flourescamine (4ml 100 mM buffer
solution). The products of the reaction were analyzed by capillary electro-
phoresis in a capillary of 50mm (internal diameter) and 77 cm (length). A
voltage of 30 kV was applied to the ends of the capillary.
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coated fused silica with an internal diameter of 50mm. The
samples (8 nl) were introduced into the capillary by a
positive pressure injection. A voltage of 30 kV was applied
to the capillary. The detection of the derivatized protein was
done by monitoring the UV absorbance at 214 nm.

Reagents

All chemicals were of analytical grade and were used with-
out further purification. Bovine pancreatic insulin was pur-
chased from Sigma (St. Louis, MO). 5-carboxyfluorescein
succimidyl ester was purchased from Molecular Probes

(Eugene, OR), and fluorescamine was purchased from Al-
drich (Milwaukee, WI). Stock solutions of insulin (1.5 mg/
ml, 260mM) were prepared by dissolving the protein in pH
12 water and then diluting this solution with an equal
volume of potassium phosphate buffer (100 mM, pH 6.8).

Procedures

1) Acylation with Fluorescamine. Different volumes of 100
mM buffer solution of Fluorescamine (2, 4, 6, 8, 10, and 12
ml) were added to six samples of 1.5ml insulin buffer
solution (260mM). The mixtures were allowed to react until

FIGURE 4 Schematic electrophero-
grams of acylated derivatives of insu-
lin for different values of time. In this
study, fluorescein was used as the
acylating agent. The hatched bars cor-
respond to experimental data, and the
solid bars were generated using an
average-exponential method.
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stable concentrations of intermediates were reached (;2 h),
and were subsequently analyzed by capillary electrophore-
sis. 2) Acylation with Fluorescein. Buffer solution of Flu-
orescein (7.5ml, 100 mM) was mixed with 500ml of buffer
insulin solution (260ml). The reaction was quenched at
specified times (up to 112 min) with fivefold excess of
hydroxylamine. The samples were analyzed by capillary
electrophoresis.

Computational Methods

All the computer codes were implemented in C language.
Numerical integration of kinetic equations was performed
using a fourth-order Runge–Kutta method. Optimization of
the values of rate constants was achieved using a grid search
algorithm. The equation forS̀ was solved using a bisection
method.

FIGURE 5 Set of schematic elec-
tropherograms of acylated derivatives
of insulin for different initial amounts
of the acylating agent (fluorescam-
ine). The hatched bars correspond to
experimental data, and the solid bars
were generated using long-time as-
ymptotic method.
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APPENDIX

To derive a series solution forR(t) for small values of times, we expand the
exponentials in Eq. 11 in the power series

R~t! 2 O
m51

n

Bm z H1 1 pm z S~t! 1
pm

2

2!
z S2~t! 1 . . .J 2 kR z S~t!

5 R~0! 2 O
m51

n

Bm. (A1)

Grouping the terms at equal powers ofS(t) and introducing

Hi 5 O
m51

n Hpm
i z Bm

i! J 1 d1,i z kR

leads to Eq. A2. Next,S(t) is expanded in a power series:R(t) 5 ¥z50
` fz z

tz. From

R~t! 2 O
i51

`

Hi z Si~t! 5 R~0!, (A2)

the definition ofS(t), we obtain

S~t! 5 E
0

`

R~t9! dt9 5 E
0

`SO
z50

`

fz z t9zDdt9 5 O
z50

` fz
z1 1

z tz11.

(A3)

Substitution of A3 into A2 leads to

O
z50

`

fz z tz 2 O
i51

`

HiHO
z50

` fz
z1 1

z tz11J 2 R~0! 5 0. (A4)

After rearranging the terms and equating coefficients at all powers oft to
zero, the series expansion coefficientsfz are obtained. The first four of
them are given in A5:

f0 5 R~0! (A5)

f1 5 H1 z R~0!

f2 5 H2 z R2~0! 1
H1

2 z R~0!

2

f3 5 H3 z R3~0! 1
4

3
z H2 z H1 z R2~0! 1

1

6
H1

3 z R~0!
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