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This paper describes the derivation of a Knowledge-Based Potential for intermolecular interactions from the
statistical information stored in the Cambridge Structural Database. We develop a statistical mechanical method
that relates the occurrences of intermolecular contacts in the database to their energies. Our approach allows
us to quantify (in the form of energy) the geometrical preferences of interactions. We use our method to
construct energy maps for a hydrogen bond between carbonyl oxygen and amino hydrogen. Our results
demonstrate high orientational selectivity of this type of hydrogen bonding.

Introduction

Robust, predictive computational tools for many aspects of
chemical design aid experimental programs in drug discovery,1,2

materials,3 and self-assembly,4-6 to name a few areas of current
interest. These tools must incorporate both molecular design
elements and adequate functional understanding of intermo-
lecular interactions. This functional understanding should be
distinguished from fundamental understanding, which, though
very desirable, is not necessary. Rather, what is required is a
means to quantify interactions between atoms, functional groups,
and other, larger structural elements.

Empirical force fields are used in CHARMM,7,8 AMBER,9

OPLS,10,11 MMFF,12 GROMOS,13 MM3,14 and heuristic rule-
based methods.15 These methods have the very well-understood
shortcoming of limited transferability, resulting from param-
etrizations on specific systems. Indeed, it is appropriate to
develop potential energy functions tailored to each physical
phenomenon in which predictive computational tools are sought.
This paper is the first of a series aimed at generating and using
a potential energy function for the prediction of crystal structures
of small organic molecules.

The prediction of the structures of molecular crystals has
proven to be a challenging problem.16-18 In one common
computational method, symmetry operations are used to con-
struct crystal “precursors” (clusters) of several molecules. Their
energies are evaluated, and the best ones are chosen. These are
expanded into full, three-dimensional crystals using translational
search algorithms.19-21 The main flaw of this approach is that
there is no guarantee that a low-energy cluster of a few
molecules will represent the low-energy structure in the crystal.
Another widely applied strategy is based on the Monte Carlo
simulated annealing algorithm. This search method uses, from
the beginning, periodic boundary conditions (i.e., a crystal, not
a cluster approach). It varies parameters describing the packing
in the crystal (unit cell parameters and Euler angles) according
to Metropolis criterion.22-25 The success of this type of approach
is highly dependent on the accuracy of the force field used.
With common force fields, such as CHARMM, it was possible

to predict crystal structures of only certain classes of simple
molecules, but for more complicated cases (e.g., when many
polymorphs exist), no consistent computational method is
available.

The Cambridge Structural Database (CSD) provides the
statistical information describing the occurrence of specific
fragments (synthons,26 polymorphs,27 or particular intermolecu-
lar interactions28) in crystals. When combined with computa-
tional methods or some phenomenological assumptions (constant
packing coefficient,29 Etter’s postulates30-32), the statistics
extracted from CSD could be helpful in predicting crystal
structures. Although several researchers have collected CSD
statistics describing particular types of intermolecular inter-
actions,33-41 the information stored in CSD has not been
expressed in the quantitative form of an empirical potential.

In this work, we present an algorithm that allows construction
of an empirical potential function from the statistical information
stored in CSD. The approach we use, referred to under several
names (Knowledge-Based Potential, Quasi-Chemical Approxi-
mation) has been used in studies of protein folding,42,43

prediction of protein-ligand binding affinity,44,45 andde noVo
ligand design,46 and it correlates frequencies of observed
geometries to predictive energies by the way of the assumption
that the observations are truly representative. The method we
develop is capable of quantifying the orientational preferences
of intermolecular interactions (e.g., hydrogen bonds). We apply
our algorithm to calculate the potential energy maps of
C)0‚‚‚H-N hydrogen bondssa key feature of protein-ligand
interactions, of crystals, and of tertiary structure in biological
and nonbiological molecules.47

Theory

In this section, we develop the statistical-mechanical formal-
ism of our knowledge-based potential. We (i) convert the
observed frequencies to probability densities, (ii) construct a
scoring function that is related to probability densities by a
Boltzmann-like relationship, and (iii) show that this scoring
function has a meaning of true energy.

We consider a database ofø molecular crystals. We specify
the cutoff radius for intermolecular contactsR, such that two† The authors contributed equally to this research..
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atoms are said to form an intermolecular contact if their
separation is smaller than or equal toR. The number of
intermolecular contactsNC in crystal C is defined as the number
of contacts between the atoms of an arbitrary molecule in this
crystal with atoms of all other molecules. The total number of
intermolecular contacts in the database isNø ) ∑CNC. Consider
an intermolecular interaction xy between atoms x and y. If the
number of contacts of this type in the database isnxy, then the
probability of occurrence of such contact in the database is pxy

) nxy/Nø, independent of the geometry of the interaction.
To investigate the geometric preferences of the xy contacts,

we introduce a local spherical system of coordinates r,θ,æ
(Figure 1). The probabilitypxy(r,θ) of occurrence of the xy
interaction within the volume elementV(r,θ): r ∈ (r,r + ∆r)
andθ ∈(θ, θ + ∆θ), irrespective of the value of the azimuthal
angleæ, is given by eq 1, in whichpxy(r,θ|xy) is the conditional
probability, andnxy(r,θ) is the number of interactions in V(r,θ).
The corresponding probability density

is Fxy(r,θ) ) nxy(r,θ)/(NøV(r,θ)). We define a scoring function
E (“energy”) of interaction, which is related to the probability
density in a Boltzmann-like fashion. The normalizing factorZ
is analogous to a partition function over energy states in
Boltzmann’s statistics (eq 2) and can be eliminated by an
appropriate choice of the reference state (eqs 3-5).

We took the reference state of constant probability densityFref,
which we set equal tonxy/(Nø∑r,θV(r,θ)) to ensure proper
normalization of probabilities.

To study the dependence of energy on the azimuthal angle
æ, we proceed as before and define the probability of forming
a contact xy within the volume elementV(r,θ,æ): r ∈ (r,r +
∆r), θ ∈(θ,θ + ∆θ), and æ ∈(æ,æ + ∆æ) by pxy(r,θ,æ) )
pxy(æ|r,θ) pxy(r,θ) ) nxy(r,θ,æ)/Nø, where the conditional
probability pxy(æ|r,θ) ) nxy(r,θ,æ)/nxy(r,θ). For each volume
elementV(r,θ,æ), we define the corresponding energyE*( r,θ,æ)
as the sum ofE*( r,θ) and the correction energyε*(æ|r,θ).
Because the average value of energyE*(r,θ,æ) over the
azimuthal angle is equal toE*( r,θ), the average ofε*(æ|r,θ) is
zero (eq 6). We introduce coefficientsλ (adjusting the zero of
energy for each volume elementV(r,θ,æ) with respect to
E*( r,θ)) andâ (a small number ensuring finiteness of energy;
typically ∼0.0001) and stipulate, as before, the logarithmic
dependence of the energy correction on probability density (eq
7). Solving eq 7 forλ(r,θ), leads to the final expression for
E*( r,θ,æ) (eq 8).

Because the probabilities of interactions of different types are
statistically independent (we assume no significant cross-
correlations within the database), our definition of the scoring
function (“energy”) proportional to the logarithm of the prob-
ability density ensures the additivity of pairwise interaction
energies. In addition, the energies defined in this way have the
meaning of true, physical energies. To show this, we start by
investigating how the strength of a particular intermolecular
interaction in a molecular crystal influences the entropy of the
crystal. Consider a setΩM of all crystals of small organic
molecules, which have the same molecular formula M (i.e.,
structural isomers). Because the packing coefficients in crystals
of nonionic organic molecules are nearly constant,48 and because
the molecular volumes of structural isomers are similar,49 the
intermolecular energies50 (in a coarse-grained potential) all have
roughly the same valueEM in all crystals ofΩM. By construc-
tion, the sum of energies of pairwise intermolecular interactions
(ij) in any of ΩM crystals is approximately equal toEM, ∑ijEij

) EM. We select one of the interactions (xy) having energy
Exy. The number ofΩM crystals with this interaction present is
denotedΩM(Exy) ) ΩM(∑ij*xyEij ≈ EM - Exy). The right-hand
side of this equation gives the number of crystals, in which the
sum of energies of all interactions other than xy is equal toEM

- Exy, and can be related to the number of ways the atoms in
a molecule of formula M can be arranged to give a stable crystal
with xy interaction. Therefore,ΩM(Exy) can be viewed as a
measure of conformational entropySM(Exy) ) klnΩM(EM - Exy).
If EM . Exy (no single interaction dominates the interaction
energy; true for organic, nonionic molecules), the logarithm can
be expanded in a Taylor series aroundEM (eq 9).

The derivative of conformational entropy with respect to energy
is a constant, which defines the thermodynamic temperatureT
of the database (unknown, as in any knowledge-based potential).
BecauseΩM(Exy)/ΩM is the conditional probability of the
occurrence of crystals with interactionExy in ΩM, (9) can be
rewritten in the form of eq 10. Finally, the summation over

Figure 1. Coordinate system used in describing (a) general interaction
X‚‚‚Y and (b) CdO‚‚‚H-N hydrogen bond. In (a)r is defined as the
distance between atoms X and Y,θ is the angle O1-X-Y (where O1
is an arbitrary reference point), and the dihedral angleæ is taken with
respect to a plane containing X and O1. In (b), X and Y are atoms
covalently bonded to the carbonyl carbon (X) C and Y ) N for
amides, X) C and Y) O for esters). Volume element (∆r,∆θ,∆æ)
around the hydrogen atom is also shown.

pxy(r,θ) ) pxy(r,θ|xy) pxy ) nxy(r,θ)/Nø (1)

Fxy(r,θ) ) Z-1‚exp(-E(r,θ)/kT);

Z ) ∑
r,θ

Ω(E(r,θ))‚exp(-E(r,θ)/kT) (2)

Eref(r,θ)/kT ) -ln Fref(r,θ) - ln Z (3)

E*( r,θ) ) E(r,θ) - Eref(r,θ) (4)

E*( r,θ) ) -kTln
Fxy(r,θ)

Fref(r,θ)
(5)

∑
æ

pxy(æ|r,θ)ε*(æ|r,θ) ) 0 (6)

∑
æ

Fxy(æ|r,θ)(ln(Fxy(æ|r,θ) + â) - λ(r,θ)) ) 0 (7)

E*( r,θ,æ) )
λ(r,θ) - kTln(Fxy(r,θ)(Fxy(æ|r,θ) + â)/Fref(r,θ)) (8)

lnΩM(EM - Exy) ) lnΩM(EM) -
dSM

dE
|E)EM‚

Exy

k
(9)
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molecules of different molecular masses, gives the dependence
of the probability of interaction xy on its energyExy (eq 11).
Note that, despite its mathematical similarity, eq 11 isnot a

statement of Boltzmann distribution of a system (database)
attaining canonical equilibrium: a database of structures frozen
in their minimal energy conformations does not represent a
proper canonical ensemble of many conformational states. The
equation does, however, relate the probabilities of occurrence
of atom-atom interactions in a database, to the true energies
of these interactions.

Computational Methods

We used a hydrogen bond between carbonyl oxygen and
amino hydrogen as a model interaction. The geometry of the
interaction was defined by three variablesr,θ,æ corresponding
to O-H distance, C-O-H angle and X-C-O-H dihedral
(azimuthal) angle, respectively (Figure 1b). The cutoff radius
was set at 3.5 Å (the value above which the number of hydrogen
bonds per unit volume was found to be approximately constant).
The θ angles considered were between 80 and 180°.

The Cambridge Structural Database was searched for hydro-
gen bonds of interest. Out of the total of 167 797 entries, only
those of very good quality (R-factor less than 0.05) were
considered. This constraint left 27 718 structures subject to
further analysis. We further excluded from our searches some
classes of compounds in which specific interactions might
occlude genuine properties of hydrogen bonding: in particular,
ionic substances, metal complexes, and compounds containing
diffuse-orbital elements were rejected (Supporting Information).

We found 7424 CdO‚‚‚H-N hydrogen bonds that fell within
these constraints. In 3098 instances, hydrogen bonds were
formed by esters (X) C, Y ) O) and in 2621 cases by amides
(X ) C, Y ) N). Ureas contributed 949 counts, ketones 374,
and remaining classes of compounds 382. It was only for esters
and amides that the statistics were abundant enough to guarantee
statistical significance. In probing geometric preferences, the
r,θ plane was divided into 100 volume elements V(r,θ) of size
0.2 Å by 10°. A CSD search was performed for every volume
element to obtain the numbern(r,θ) of hydrogen bonds in it.
These counts were converted to energiesE*( r,θ) using the
procedure described in the Theory Section. To study the
dihedral-angle preferences of hydrogen bonds, eachV(r,θ) was
subdivided into 10V(r,θ,æ) volume elements. The statistics were
collected as before and subsequently converted to energies
E*( r,θ,æ).

In the CHARMM calculation (Figure 4), the atom types and
charges for the molecules were assigned by Quanta molecular
editor facility. At eachθ, eight complexes were generated by
rotating the donor around H-N axis in 45° intervals. The energy
minimization of these complexes was implemented using
CHARMM (50 steps of steepest descent followed by adopted
basis Newton-Ralphson procedure until the convergence of
0.01 kcal/mol was achieved). The interaction value for a given
θ was calculated by taking the average over these eight
complexes (the sterically clashing configurations with the energy
greater than 6 kcal/mol were discarded). During the minimiza-
tion, the positions of hydrogen bonding atoms (H,N,C,O,Y) were

fixed, and the methyl carbons of the acceptors were constrained
to the COY plane.

Results and Discussion

The (r,θ) energy maps for CdO‚‚‚H-N hydrogen bonds are
shown in Figure 2. In hydrogen bonds involving a carbonyl
group of an arbitrary type (“generic case”; includes amides,
esters, etc.), the energy minimum is located betweenr ) 1.8
and 2.2 Å, andθ is located in the range∼115-145°, with a
“tail” of slightly higher energy extending up to 180°. Interactions
corresponding toθ below 100° are sterically inaccessible for
nearly all distances. No bonds are found forr smaller than∼1.5

Figure 2. Energy mapsE(r,θ) derived from the CSD for different
types of CdO‚‚‚H-N hydrogen bonds: (a) generic case (X,Y- any
atoms), (b) amides (X) C, Y ) N), and (c) esters (X) C, Y ) O).
The energy minima located at distances∼2 Å are colored in gray scale.
Amides show no angular preference for hydrogen bond in theθ range
120-180°. Esters have more localized minimum betweenθ ∼ 120 and
θ ∼ 140°.

pM(Exy|M) ) (ΩM(EM)/ΩM)exp(-Exy/kT) (10)

p(Exy) ) ∑
M

p(M)pM(Exy|M) ) (ΩM(EM)/ø)exp(-Exy/kT)

(11)
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Å. For larger (above∼3 Å), there is no angular preference for
bonding: the energy surface is uniform in theθ direction.
Amides show low angular specificity in forming hydrogen
bonds: the best bonds are observed at distancesr roughly the
same as in generic case, but in a much broader range ofθ angles
(∼115-180°). Amides are better-than-average hydrogen binders
because the depth of the energy minimum is larger than that
found in the generic map. In esters, hydrogen bonding is weaker
than average; the energy minimum is more localized than in
the generic case and lies betweenθ ∼120-140°.

We performed two additional calculations to probe whether
the energy maps described above are representative to the entire
class of compounds (i.e., esters or amides) and are not skewed
by some subgroup of the class. For each class, we constructed
a trial set composed of 300 randomly chosen structures and
calculated probability densitiesFtrial(r,θ) for this set. We
correlated probability densities of the trial set with those of the
entire class (for the same volume elements). We found statisti-
cally significant correlations both for amides, and for esters
(correlation coefficients 0.82 and 0.75, respectively), proving
the self-consistency of the mehod.

The dependence of hydrogen bond energy on azimuthal angle
æ is shown in Figure 3. For a given range ofr, we constructed
(θ,æ)r energy maps. We chose two portions of (r,θ) conforma-
tional space for analysis: a low-energy region betweenr ) 1.9
Å and r ) 2.1 Å (80° < θ < 180°), and the region of high,
roughly constant energy 2.3 Å< r < 2.5 Å (80° < θ < 180°).
The (θ,æ)r)1.9-2.1 Å energy maps for both amides and esters
reveal preference for hydrogen bonding for azimuthal angles
near either 0 or 180°. For amides, theæ ) 0° minimum is
slightly deeper thanæ ) 180°, whereas for esters the opposite
is true. At longer distances the azimuthal selectivity for bonding

is absent; there are no distinct minima on the (θ,φ)r)2.3-2.5

energy maps, either for esters, or for amides.
Our results imply that C)0‚‚‚H-N hydrogen bonding is a

highly distance-dependent and directional interaction, with
preference for the hydrogen atom lying in the plane of carbonyl
bond and along the direction of oxygen’s lone pairs (where the
last term is used with due caution51). Because the existence (or
nonexistence)52-54 of resonance structures is still a controversial
issue, we just briefly notice, that the differences in (r,θ) energy
maps between amides and esters are compatible with the
hypothesis of resonance in amides (development of negative
charge on oxygen, resulting in a more electrostatic, less
directional character of hydrogen bonding).

In our procedure, we assume that the crystal packing effects
do not contribute significantly to the observed frequencies and
orientations of individual intermolecular contacts,55 so that the
energies derived from the observed distribution of the
CO‚‚NH contacts in the crystal database correspond to the real
hydrogen bond energies. In other words, we assume that the
tendency of the molecules to adopt the close packing arrange-
ment29 in the crystal form does not affect the contact statistics
strongly enough to make our hydrogen bond potentials signifi-
cantly different from those in the gas phase. Such an effect
would bias the observed hydrogen bond distribution toward one
or several particular orientations due to the crystal packing rather
than due to pure energetic effects. However, if the database is
large and diverse enough as in our case, it is reasonable to
assume that the average effect of such biases is small because
many different molecular arrangements average out for all
atomic contacts and their geometries (unfortunately, the exact
proof of this assumption would require computation of higher-
order correlations, for which the statistics extracted from the

Figure 3. (θ,æ)r maps of the azimuthal energyE*( r,θ,æ) for amides and esters. For the O‚‚‚H distancer ) 1.9 Å, there are two deep minima
(æ ) 0° andæ ) 180°) corresponding to the donor hydrogen atoms positioned in the plane of the carbonyl. In amides, theæ ) 0° minimum is
deeper than that atæ ) 180°. In esters, the minima have almost equal depth. At larger separation (r ) 2.4 Å), there is no azimuthal preference for
hydrogen bonding and the profiles are almost uniform without distinctive minima.
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database are very scarce). Therefore, our method extracts the
atomic interaction potentials that have the meaning of “true”
energies, in this particular case, the CO‚‚HN hydrogen bond
energies.

The ability of our method to account for high directionality
of hydrogen bonding is one of its potential advantages over
existing force fields. To illustrate this point, we compared our
energy maps with those obtained from a commonly used
CHARMm potential (Figure 4). We found that CHARMm
energy landscapes are virtually flat both for esters and for
amides, and they show no angular preferences for contacts. It
is only when van der Waals interactions due to the neighboring
atoms are included, that directionality appears. Nonetheless,
“pure” hydrogen bonds (i.e., only C)0‚‚‚H-N) calculated by
CHARMm are not directional at all.

In our method, we first derive probabilities and energies from
the statistics based on only two variables (r,θ), and only later
include the dependence on the azimuthal angle. We found this
order of calculations advantageous to the (theoretically equiva-

lent) procedure starting with (r,θ,æ) statistics. If the number of
contactsnxy in a database is moderate, the chances are that there
will be no contacts found in some volume elementsV(r,θ,æ),
leading to very high energy valuesE*( r,θ,æ). On the other hand,
if the more abundant (r,θ) statistics are collected first, the regions
of low and high probability densities can be identified, so that
either (i) the volume elementsV(r,θ,æ) can be adjusted
accordingly (larger ones for regions of low number of contacts)
or (ii) dihedral analysis can be performed only over the high-
density (r,θ) regions. This approach gives smoother energy
surfaces and savings in computer time. Of course, when the
statistics for a particular interaction are very scarce in a database,
even the analysis starting on the (r,θ) level will give meaningless
results. For instance, the energy map for ketones (374 hydrogen
bonds) showed a rather unexpected minimum at 1.9 Å< r <
2.1 Å and 170° < θ < 180°. Upon reviewing the raw statistical
data, it was found that this result is statistically insignificant
because the number of counts in this volume element was only
five. To avoid such artifacts, we adopted a criterion for statistical
significance stipulating that the relative error (n-0.5) be less than
20% (i.e., only volume elements with more than 25 structures
are statistically significant).

The hydrogen bonds studied in this paper represent but a small
fraction of interactions that need to be incorporated in a complete
knowledge-based potential. Thus, our next objective will be to
extend the methodology developed here to describe other kinds
of hydrogen bonds, as well as nondirectional interactions.
Because the energies we extract from CSD using our method
have the meaning of true energies, they are in principle
transferable to systems other than crystals. In particular, we are
interested in incorporating parts of CSD-derived potential
(notably, hydrogen bonds) in our SmoG software package45,46

for protein ligand design. The ultimate test of the accuracy of
our potential, would be to compare it with that based on quantum
mechanical calculations. Unfortunately, to our knowledge, no
high-level precision ab initio orientational potential surfaces have
been obtained for model systems that relate directly with our
CSD investigations. In the absence of such calculations (which,
if properly done would represent a "tour de force"), our method
might be a complement to existing force fields.
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