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This paper describes the design of a parallel algorithm that uses
moving fluids in a three-dimensional microfluidic system to solve
a nondeterministically polynomial complete problem (the maximal
clique problem) in polynomial time. This algorithm relies on (i)
parallel fabrication of the microfluidic system, (ii) parallel searching
of all potential solutions by using fluid flow, and (iii) parallel optical
readout of all solutions. This algorithm was implemented to solve
the maximal clique problem for a simple graph with six vertices.
The successful implementation of this algorithm to compute solu-
tions for small-size graphs with fluids in microchannels is not
useful, per se, but does suggest broader application for micro-
fluidics in computation and control.

M icrofluidic systems are providing the basis for new types of
rapid chemical and biological analyses (refs. 1–3). With the

increasing complexity of microfluidic systems, there is also a
growing need to carry out relatively complex processes—logic
operations, f luidic control, and detection—on the chip. Al-
though these processes can be (and usually are) controlled by
electronic systems, it would be more natural and compatible to
use the same medium (that is, a fluid) to carry out some or all
elements of the required computation and controlydecision
making. Here, we explore the potential of microfluidic systems
in computation by using a representative ‘‘hard’’ problem—a
parallel solution of a nondeterministically polynomial (NP)
complete problem [the maximal clique problem (MCP)] for a
graph with six vertices. This method we describe uses moving
fluids to search the parallel branches of a three-dimensional
(3D) microfluidic system simultaneously, exploits parallel fab-
rication of relief patterns by photolithography, and detects
solutions in parallel with fluorescence imaging.

Intuitively, a problem is in the class NP (i) if it can be solved
only by an algorithm that searches through exponentially many
candidate solutions, and (ii) when the correct solution has been
identified, verification of the solution can be performed easily
(ref. 4). No feasible sequential algorithm is known to solve NP
problems. If one can, however, search all candidate solutions
simultaneously in parallel, solution of NP problems becomes
feasible. The potential for parallel searches is the foundation for
interest in DNA-based computation (refs. 5–8) and in part for
interest in quantum computation (refs. 9–12). In addition to
sequence-specific recognition (the basis of DNA computation)
and manipulation and resolution of entangled quantum states
(the basis for quantum computation), other physical phenomena
or systems might also be suited for solving computational
problems. In this paper, we demonstrate the use of moving fluids
in a microfluidic system to solve an NP complete problem.

Algorithm. A graph is a set of vertices (dots) connected by a set
of edges (lines) (Fig. 1). A clique is a graph such that any two of
its vertices are connected by an edge. For a given graph G with
n vertices, the MCP asks for the maximum number k, such that
G contains a subgraph of k vertices that forms a clique (refs. 4,
7). Fig. 1 shows a graph G with three vertices (n 5 3) and three
edges (Fig. 1 A) and a graph with six vertices (n 5 6) and 13 edges
(Fig. 1B). In Fig. 1 A, the largest clique is {1,2,3} (k 5 3), which

is the graph itself; in Fig. 1B, the largest clique is {1,3,4,5,6} (k 5
5). The naı̈ve way, and more or less the only way, to solve MCPs
is to check whether each of all possible subgraphs of G (there are
exponentially many) is a clique, then return the size of the biggest
subgraph that is a clique. For example, to find the largest clique
in Fig. 1 A and B, there are 23 2 4 5 4 and 26 2 7 5 57 subgraphs
that must be checked, respectively. We ignore the (n 1 1)
subgraphs that are trivial: for a graph of size n with 2n subgraphs,
there are n subgraphs that contain only one vertex (e.g., {1}, {2},
etc.), plus one subgraph that is empty ({0}).

Our algorithm for solving MCP for a graph G has four steps:
(i) for every edge [i,j] (edge that connects vertices i and j) of G,
label (tag) every subgraph of G that contains vertices i and j, (ii)
for every subgraph, count the number of tags, (iii) decide
whether there are enough tags (edges) in each subgraph to be a
clique, and (iv) return the size and identity of the largest clique.

Implementation of Algorithm. To implement this algorithm, we
build a generic microfluidic device that can be used to solve the
MCP for every graph having the same number of vertices.§ Fig.
2A is a schematic diagram that shows the encoding of a generic
three-vertex graph as a set of reservoirs, wells, and channels.
Every possible subgraph of a graph with n vertices is represented
as a well, and every possible edge is represented as a reservoir
(Fig. 2 A). Each edge [i,j] (reservoir) is connected, through
microfluidic channels, to each subgraph (well) that contains both
vertices i and j (Fig. 2 A). To avoid the crossover between
channels that would occur in a two-dimensional system (as
depicted in the two-dimensional diagram of Fig. 2 A), we con-
struct a 3D microfluidic system and divide the microfluidic
device into layers: each layer contains a reservoir representing
one edge, the wells for all of the subgraphs that contain the edge,
and the channels that connect these wells to the reservoir. For
example, Layer One (Fig. 2B) represents the edge [1,2] and its
connections to subgraphs {1,2} and {1,2,3}; Layer Two (Fig. 2C)
and Layer Three (Fig. 2D) represent the connections of edges
[1,3] and [2,3] to their respective subgraphs. The microfluidic
device for solving a graph having three vertices contains four
layers (Fig. 2 B–E). Quantitation of the connectivity of each
subgraph is accomplished by measuring the flow from reservoirs

Abbreviations: 3D, three-dimensional; PDMS, poly(dimethylsiloxane); NP, nondeterminis-
tically polynomial; MCP, maximal clique problem.
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§To fabricate each layer of our microfluidic device in a polynomial number of steps, we
exploit the ability of photolithography (flood illumination) to transfer, in one step, the
patterns from a photomask onto a silicon wafer. The photomask for each layer can be
generated in parallel. We use the layer [i,j]n, which represents the [i,j] reservoir for a graph
having n vertices, to generate the layer [i,j]n11 in three basic steps: (i) we make two copies
of the layer [i,j]n, (ii) we translate one copy with respect to the other along the y axes (this
translation encodes the size of all subgraphs (wells) by its y position), and (iii) we connect
the reservoirs of the two copies of the [i,j]n layer to a new reservoir, which becomes the
[i,j]n11 reservoir. This iterative algorithm works if j Þ n11; a similar but different algorithm
is used when j 5 n11.
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§1734 solely to indicate this fact.

www.pnas.orgycgiydoiy10.1073ypnas.061014198 PNAS u March 13, 2001 u vol. 98 u no. 6 u 2961–2966

A
PP

LI
ED

PH
YS

IC
A

L

SC
IE

N
CE

S



into wells. This quantitation, in turn, is accomplished by using
liquid containing a uniform suspension of fluorescent beads. A
filter membrane is sandwiched between the top three layers (Fig.
2 B–D) and the bottom layer (Fig. 2E) for collection of these
fluorescent beads (Fig. 3A).

Step 1 of our algorithm is implemented by putting a calibrated
number of beads into each reservoir that corresponds to an edge
in G. These beads flow from the [i,j] reservoirs (edges) and are
split evenly over all of the wells (subgraphs) of G that contain
vertices i and j; the presence of the beads in a well corresponding
to a subgraph thus indicates the presence of the edge [i,j] in that
subgraph. This marking of the subgraphs is parallel, because at
each branching point, the moving fluid splits and flows simul-
taneously into both channels.

To implement step 2, we exploit the parallel nature of optical
systems to read out the relative amount of fluorescence in each
well simultaneously. For beads with homogeneous size and
fluorescence intensity, the measured intensity of fluorescence
from a well correlates well with the number of beads in that well.
This intensity can also be related to the number of edges in the
graph. If a subgraph has k vertices, it must have k(k-1)y2 units
of f luorescence to be a clique. Here, we define 1 unit of
f luorescence as the intensity observed in the subgraphs (wells)
that have only one edge, so the distribution of fluorescence
intensity among the wells is self-calibrated.

Step 3 is implemented by setting the appropriate optical
detection threshold for each clique size.

Step 4 is implemented by observing the position of the clique
along the x and y axes in our microfluidic device (Fig. 3).
Subgraphs of the same size occupy the same y position. There-
fore, the size of a clique can be easily derived by knowing its
relative displacement along the y axis. The position of the
subgraph along the x axis codes for its identity.

Fig. 3A is a schematic of the microfluidic device used to solve
the MCP for a graph having three vertices. To find the largest
clique for the three-vertex graph in Fig. 3B, a plug of buffer
containing fluorescent beads is introduced into all three reser-
voirs representing edges [1,2], [1,3], and [2,3], because all three
edges are present in the graph. The fluorescent beads in each
layer flow from their reservoir (edge) toward the wells that
represent subgraphs that contain that edge. For example, beads
in reservoir [1,2] f low toward subgraphs {1,2} and {1,2,3} but
not to {1,3} or {2,3}. When the beads in each layer reach the
wells, they flow down in the z direction toward the bottom layer.
The beads from each layer are then collected by a polycarbonate
filter, whereas the buffer solution that carries the beads flows
through the filter toward a waste collection reservoir. The
number of collected beads in each well (subgraph) varies,

depending on the number of reservoirs from which it receives
input. For example, the subgraph {1,2} has only 1 unit of
f luorescence (from reservoir [1,2]), whereas the subgraph
{1,2,3} has 3 units of f luorescence (from reservoir [1,2] [1,3], and
[2,3]). The largest clique in Fig. 3B is {1,2,3}, because it satisfies
the threshold of 3 units (3[3–1]y2) of fluorescence.

For the graph shown in Fig. 3C, a plug of buffer containing
fluorescent beads is introduced only into reservoirs [1,2] and
[2,3]. Therefore, subgraphs {1,2} and {2,3} each have 1 unit of
f luorescence, whereas {1,3} has no fluorescence and {1,2,3} has
2 units of f luorescence. The largest cliques in this example are
{1,2} and {2,3}, because {1,2,3} does not satisfy the threshold of
3 units of f luorescence. Note that the y position of the well
representing the subgraph {1,2,3} is shifted up with respect to
the other subgraphs of size two.

Materials and Methods
Fabrication of Microfluidic System. Our method for the fabrication
of a 3D microfluidic system has been described in detail else-

Fig. 1. Graphs with three (A) and six (B) vertices. The largest subgraph that
forms a clique in A is {1,2,3} and in B, {1,3,4,5,6}. We denote these subgraphs
with the vertices they contain. For example, {1,3} denotes the subgraph that
contains vertices 1 and 3. For simplicity, we use the terms subgraph and subset
interchangeably in this paper (formally, a subset is a collection of vertices of
a graph G, and a subgraph is a collection of vertices and edges of G).

Fig. 2. (A) A schematic diagram that shows the encoding of a generic
three-vertex graph as a set of reservoirs, wells, and channels. Reservoir [i,j]
represents the edge that connects the ith vertex to the jth vertex. Each well
represents a possible subgraph, and each edge [i,j] (reservoir) is connected by
a channel to each subgraph (well) that contains {i,j}. To implement this
representation in a microfluidic system, we must avoid crossover between the
channels, which is accomplished by dividing the microfluidic network into
layers (B–E): one layer represents one edge and all subgraphs that contain that
edge. For example, Layer One (B) contains the reservoir for the edge [1,2] and
the channels connecting it to wells (subgraphs) {1,2} and {1,2,3}, whereas Layer
Two (C) and Layer Three (D) contain channels connecting reservoirs (edges)
[1,3] and [2,3] to their respective wells (subgraphs). The Bottom Layer collects
the fluids from the top three layers into a waste reservoir. Note that the sets
{1}, {2}, and {3} do not contain edges, and so do not receive input from any
reservoirs; we have omitted the empty set {0} in this figure.
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where (refs. 13 and 14). Briefly, the silicon master was fabricated
by first spinning a negative photoresist (SU 8–50 or SU 8–100)
onto a silicon wafer, which has been cleaned by sonicating in
acetone (5 min) then in methanol (5 min) and dried by baking
at 180°C (10 min). The photoresist-covered wafer was soft baked
(105°C for 15 min) to evaporate the solvent, let cool, then placed
under a photomask in a Karl Suss mask-aligner (Zeiss) to expose
the photoresist. The exposed photoresist was baked (105°C for
5 min), then developed in propylene glycol methyl ether acetate
to create a master with one level of feature. Masters with two
levels of feature were fabricated by repeating this procedure with
a different photomask. The masters were silanized in vacuo (in
a desiccator) with 0.5 ml tridecafluoro-1,1,2,2-tetrahydrooctyl-
1-trichlorosilane for 12 h. The silanized masters were then used
for molding slabs and membranes of poly(dimethylsiloxane)
(PDMS). To fabricate the PDMS membrane, a drop of PDMS
prepolymer was sandwiched between the master and a Teflon
sheet and was allowed to cure overnight under pressure (10–50
kPa) at 70°C. The cured PDMS membranes and slabs were
aligned by using a home-built micromanipulator stage, oxidized
in a plasma cleaner (model SP100 Plasma System, Anatech,

Alexandria, VA) for 40 sec at 60 W under '0.2 Torr (1 torr 5
133 Pa) oxygen, and brought into contact to form an irreversible
seal. This procedure of alignment, oxidation, and sealing was
repeated multiple times for the fabrication of a multilayer
microfluidic system.

Chemicals. Negative photoresists (SU 8–50 and SU 8–100) were
obtained from Microlithography Chemical (Newton, MA), pro-
pylene glycol methyl ether acetate from Aldrich, tridecafluoro-
1,1,2,2-tetrahydrooctyl-1-trichlorosilane from United Chemical
Technologies (Bristol, PA), PDMS prepolymer (Sylgard 184)
from Dow-Corning, f luorescent nanospheres from Molecular
Probes, and silicon wafers from Silicon Sense (Nashua, NH).

Results and Discussion
Experimental Solution to a Three-Vertex Graph. Fig. 4 A and B show
the actual device used to solve the three-vertex graph in Fig. 3B.
This 3D microfluidic device is constructed by fabricating, stack-
ing, and sealing thin surface-embossed membranes of PDMS by
using rapid prototyping technique (refs. 13–16); this technique
is especially valuable here, because several iterations of multiple
layers of design are required.¶ There are two major motivations
for using 3D microfluidic systems for solving MCP: (i) the 3D
structure solves all problem of crossover by isolating layers, and
(ii) a membrane filter can be sandwiched between the bottom
(waste) layer and the top layers for the accumulation of fluo-
rescent beads. In addition, the flow in the z direction through the
size filter performs an integration operation for beads from
different levels.

Fig. 4C shows a plot of the experimentally obtained fluores-
cence intensity for the three-vertex graph shown in Fig. 3B. The
Inset plots the fluorescence intensity for each of the subgraphs,
{1,2}, {1,3}, {2,3}, and {1,2,3}. The observed fluorescence
intensities match the expected ones well; the intensity of fluo-
rescence for {1,2,3} is exactly three times that for the two-vertex
subgraphs.

The accurate accounting of the contributions to each well
(subgraph) from the appropriate reservoirs (edges) relies criti-
cally on the ability of the multichannel structure to divide
incoming flows without bias. This even splitting is accomplished
by ensuring that, at each junction, the pressure drop along the
two branches is identical. Two geometrical factors affect this
pressure difference, the cross section of the channels and the
total length of channels that make up the different paths. The
cross section of the channels is very homogeneous across a layer,
because spin coating—the step in rapid prototyping that deter-
mines this thickness—results in constant resist thickness across
a wafer. The length of the channels between source and reservoir
in each layer varies substantially (Fig. 2), because wells that code
for large subgraphs are further from the reservoirs than are wells
of small subgraphs. We compensate exactly for this difference in
length, however, by designing a channel system in the very
bottom (waste) layer (Fig. 2E) such that the channels in this layer
make the distance from reservoir to waste the same for all
channels. Because both the cross section and the total length of
each channel pathway from reservoir to waste are the same, and
because the pressure that drives flow is applied across this path,
f low rates in each channel are indistinguishable.

Experimental Solution to a Six-Vertex Graph. Fig. 5 B and C show the
solution to the six-vertex MCP in Fig. 1B; to solve a generic
six-vertex MCP, we need 15 ‘‘top’’ layers (layers containing

¶The cost of fabricating the chrome masks for the 16-layer device is '$500 3 16 5 $8,000,
with typical turnaround times of a few weeks. In comparison, the transparency masks used
in this experiment cost '$50 for all 16 layers, with turnaround time of less than 24 h. These
issues of time and cost become significant when multiple optimization steps are involved,
as is the case in these experiments.

Fig. 3. (A) Schematic of the four-layer microfluidic device used in solving a
MCP for a graph having three vertices. This 3D microfluidic system has reser-
voirs—where we inject a plug of fluorescent beads—to represent all of the
possible edges of a graph with three vertices, and wells—where the fluores-
cent beads are collected by a size filter sandwiched between the bottom and
the top three layers—to represent all possible subgraphs of a three-vertex
graph. The arrows in the schematic indicate directions of fluid flow; suction
(house vacuum) is applied at the waste reservoir to drive fluid flow from the
reservoirs representing edges to the waste reservoir. (B and C) Two three-
vertex graphs and the expected fluorescence intensity distributions for each
graph. The threshold for size three cliques is 3 units of fluorescence, and for
size two cliques is 1 unit. The largest clique in B is {1,2,3}, which is the graph
itself. In C, the maximal cliques are {1,2} and {2,3}. Note that the positions of
the wells (subgraphs) in the x--y plane encode their identity. The presence of
{3} between {1,2} and {1,3} accounts for the extra spacing between these two
subgraphs (see Fig. 2).
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reservoirs and splitting channels), one filter membrane, and one
bottom layer (to connect the vertical channels to the membrane
and the channels leading to waste). The design of one layer is
shown in Fig. 5A; the design of the other layers is shown in Fig.
7, which is published as supplemental data on the PNAS web site,
www.pnas.org. In general, for a graph with n vertices, we need
[n(n-1)]y2 layers, that is, one for each possible edge. To fabricate
the device for solving a graph with six vertices, we can stack all
16 layers ((6(6–1)y2] 1 1), as we did for the three-vertex MCP.
Alternatively, we can fabricate each layer individually by sealing
a filter membrane between one of the top layers and a copy of
the bottom layer; this approach results in the fabrication of 15
independent microfluidic systems, with each system containing
one top layer, one filter membrane, and one bottom layer.
Instead of using the z-direction fluid flow for summing the beads
from each layer, we can optically integrate (parallel) the fluo-
rescence intensities from each layer. We demonstrate this latter
approach for solving the graphs in Fig. 5.

Fig. 5B shows the optically integrated image of all 15 layers.
Six sets of wells (subgraphs) are displaced from each other along
the y axis, y1–y6, which correspond to subgraphs of sizes 1 to 6.
Fig. 5C plots the fluorescence intensities of the sets y2–y6.
Subgraphs of size 1 (y1) are trivial solutions and do not contain
any fluorescent beads because they have no edges. The threshold
criterion in Fig. 5 is identical to that in Fig. 4C, that is, subgraphs
with k vertices must have k (k-1)y2 units of f luorescence to be
cliques. Using this criterion, we see that the largest subgraph that
reaches threshold is {1,3,4,5,6}. To account for errors, we can use
a more relaxed criterion. For a subgraph of size k, we might set
a threshold halfway between the intensities expected for a k
clique and a k-1 clique. To satisfy this threshold, subgraphs of

size k must have [(k-1)(k-2)y2 1 (k-1)y2] units of f luorescence
intensities. The microfluidic device we used to solve MCP for a
graph of size n can also be used to solve any MCP of size less than
n. Fig. 6 presents solutions to the five-vertex MCP solved by the
same device as that used for the graph in Fig. 5B. The largest
cliques for this graph are {1,3,4} and {3,4,5}.

The microfluidic system we described for solving MCP is an
analog computation device. Two potential sources of error in our
microfluidic computer are: (i) biased splitting of fluorescent
beads at each channel branching, and (ii) misalignment between
layers that results in error in the integrated fluorescence inten-
sities. For the six-vertex MCP we solved, we did not detect
deviations in fluorescence intensities from the expected values.
If we were to use a very small number of beads, however, we
might encounter errors associated with statistical f luctuations in
the number of beads that distribute between channels at branch
points. To overcome errors caused by uneven splitting of beads,
we could implement an error-correction step before integrating
the intensities from each layer: all f luorescence readings above
a certain fixed threshold would be reset to 1 unit of f luorescence,
and all readings below this threshold would be reset to zero. In
effect, this procedure would digitize the fluorescence readings
from each layer.

Misalignment between layers is a more serious problem. The
main cause of misalignment in our system is differential shrink-
age of PDMS in different layers during fabrication (probably
reflecting small differences in concentrations of crosslinks
formed). We solved this problem, in part, by fabricating all layers
by using exactly the same procedures, that is, by using the same
amount of catalyst for polymerization, by mixing components
carefully, and by curing at the same temperature. Use of a hard

Fig. 4. (A and B) Fluorescence photographs of the actual device for solving a three-vertex graph, viewed from the top (A) and side (B). The channels in both
A and B were filled with fluorescein for ease of visualization. The whitish membrane below the top three layers is the polycarbonate size filter used to collect
the fluorescent beads. The bright circles in A are wells that represent the different subgraphs; the reservoirs that represent edges are to the left of the picture
and are not shown. In B, the part of the channels that is directly underneath the membrane was not fluorescent because the membrane blocked the UV light
used to excite fluorescence. (C) Plot of the fluorescence intensities obtained experimentally for the input graph shown in the inset. The largest clique in this graph
is {1,2,3}.
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nonelastomeric material like silicon would eliminate or greatly
alleviate this shrinkage problem but would make the fabrication
more complex in other ways. Fabrication in PDMS is especially
appropriate in this study, which focuses on proof of concept.

Conclusions
The strength of this microfluidic system as an analog computa-
tional device is its high parallelism. Its weakness is the expo-
nential increase in its physical size with the number of vertices.
This space–time tradeoff is reminiscent of the limitations of

using DNA for solving large NP problems (refs. 5–7). We
estimate that the largest graph that might be solved with our
algorithm—by using 12-inch wafers (commercially available)
and 200-nm channels (within the range of photolithography)—is
20 vertices. If we use space more efficiently by encoding sub-
graphs in a plane and use the third dimension for fluid flow, we
might solve 40-vertex graphs. By using a computer capable of
performing 109 operations per second, a 40-vertex graph can be
solved in about 20 min, which makes this microfluidic approach
(in its current form) impractical to compete with traditional
silicon computers for solving large search problems. In compar-
ison to DNA-based computation, this microfluidic system can
carry out certain logical operations, such as addition, more
naturally. The z-direction flow in the four-layer microfluidic
device (Fig. 4) acts as an integrator by adding the beads that
arrive at the wells from all of the layers. In contrast, the
implementation of an algorithm for DNA-based addition was
nontrivial (ref. 8), although a far more direct method for DNA
addition has been proposed (ref. 17) and partially implemented
(ref. 18).

The algorithm we described here for using fluids to search the
parallel architecture of a microfluidic system could also, per-
haps, be implemented in a 3D microelectronic circuit. There are,
however, several advantages to using microfluidic systems. (i)
Fluids can carry fluorescent beads or molecules, thereby making
the readout by using parallel optical systems simpler than in
microelectronic circuits. (ii) Many different ‘‘color’’ beadsy
molecules can be used in microfluidic systems, whereas electrons
have only one ‘‘color’’; this feature permits f luidic systems to
encode more information than electrical systems. (iii) Microflu-
idic systems might not require power (our algorithm, for exam-

Fig. 5. (A) The design of Layer One of the microfluidic device used for solving
a six-vertex MCP; the other 15 layers are shown in Fig. 7. (B) Fluorescence
micrograph showing integrated fluorescence intensities for all subgraphs of
the six-vertex graph depicted in the Inset. Note that all subgraphs with two
vertices are along row y2, three vertices along row y3, . . . , and six vertices
along row y6. (C) The corresponding fluorescence intensity plot for all sub-
graphs. Row y1 corresponds to subgraphs having only one vertex (no edges),
and is omitted in C. The largest clique that reaches threshold is {1,3,4,5,6},
colored black in C.

Fig. 6. Micrograph (A) and intensity plot (B) of solutions to the five-vertex
clique problem shown in the Inset in A. The largest cliques are {1,3,4} and
{3,4,5}.
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ple, can be implemented by using gravity). Advantages of
electrical over fluidic systems include ease of use (no clogging of
channels) and the high speed at which electrons travel through
the circuit (which is important for implementing sequential
algorithms). Although clogging is a concern in microfluidic
systems, it was not a problem under our experimental conditions,
because of the relatively small sizes of the beads used (400 nm
or smaller) compared with the widths of the microchannels (50
mm or greater).

Another motivation for using microfluidic-based computation
is the possibility of integrating fluidic components for control-
ling complex chip-based microanalytical devices. In addition,

computation by using microfluidic systems are complementary
to ones based on biological molecules (e.g., DNA) or coupled
chemical reactions (refs. 19 and 20). The wells and channels in
our 3D microfluidic system, for example, could compartmen-
talize and transport molecules and reactions for the construction
of a chemical or DNA-based computer.

This work is supported by Defense Advanced Research Planning Agen-
cyyAir Force Research LaboratoryySpace and Naval Warfare Systems
Command and National Science Foundation Grant ECS-9729405.
A.D.S. was supported by National Institutes of Health Molecular Bio-
physics Training Grant No. 5T32GM08313–10.
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