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Combinatorial small molecule growth algorithm was used to
design inhibitors for human carbonic anhydrase II. Two enan-
tiomeric candidate molecules were predicted to bind with high
potency (with R isomer binding stronger than S), but in two
distinct conformations. The experiments verified that computa-
tional predictions concerning the binding affinities and the
binding modes were correct for both isomers. The designed R
isomer is the best-known inhibitor (Kd � 30 pM) of human
carbonic anhydrase II.

The development of new drugs often depends on the identi-
fication of molecules (‘‘leads’’) that have high affinities for

specified macromolecular targets. Although tight binding is only
one important characteristic of a drug (1), it is often used as a
guide in initial stages of drug discovery. Two contrasting meth-
ods—combinatorial (2–4) and rational (5–8)—represent the
extremes in strategies for discovery of high-affinity leads. Com-
binatorial methods make it possible to screen large numbers of
potential candidates and do not require prior knowledge of the
structure of the receptor molecule. Rational methods attempt to
design high-affinity ligands based on knowledge of the atom-
level structure of the receptor and of molecular interactions. In
practice, both combinatorial and rational methods can efficiently
identify relatively low-affinity leads; both are inefficient and
unreliable in identifying high-affinity (Kd � nM) ligands (9–12).

Here, we describe a computational methodology that com-
bines combinatorial and rational strategies in the form of a
computational system that is rapid enough to generate biased
libraries of leads and accurate enough to give useful predictions
of energetics and geometry. In its first experimental test, this
method yielded a new ligand for a human carbonic anhydrase II
(HCA) that has the highest known affinity for this enzyme
(Kd � 30 pM). To our knowledge, it is the first time that a
computational method has created a ligand that has the highest
known affinity for a protein target.

Our method, called CombiSMoG for combinatorial small
molecule growth, incorporates the philosophy of combinatorial
synthesis into computational drug design and is based on two
interrelated components: a knowledge-based potential and a
Monte Carlo ligand growth algorithm. The knowledge-based
potential (13) is derived from a set of 1,000 protein–ligand
complexes, whose structures are deposited in the Protein Data
Bank crystallographic database (14). In this potential, two
atoms—one on the ligand and one on the protein—are said to
be in contact if the distance between them is less than a specified
cutoff value (usually 5 Å). The contacts are classified according
to the constituent atom types, and the frequencies of their
occurrences in the database are transformed into energies by
means of a Boltzmann-like relation to give the scoring function
used in CombiSMoG (15, 16). This potential has three main
advantages over the commonly used force fields (17–20). (i) The
binary definition of atom–atom interactions allows binding
energies to be evaluated rapidly. (ii) These energies implicitly
take into account the entropy of water desolvation after binding
of a ligand and have the meaning of binding free energies. (iii)

Because the potential is based on the large representative set of
protein–ligand complexes, it provides a statistically significant
description of interactions between proteins and small mole-
cules. Unlike most semiempirical force fields used in drug design,
the potential used in CombiSMoG is solidly based on statistical
mechanics and does not have any arbitrary adjustable parame-
ters (15, 16).

Ligands are generated in the active site of the target protein
from 100 common organic groups (e.g., hydroxyl, carbonyl,
furan, phenyl, etc.) deposited in the program’s virtual combina-
torial library. At each step of the growth algorithm, a random
fragment is chosen from this library and attached to the part of
the ligand already present in the active site (Fig. 1A). The energy
of the newly formed adduct is evaluated by using the Com-
biSMoG potential, and the addition or rejection of the fragment
is decided by a Boltzmann criterion (21), which biases the growth
toward structures with low energy. The simplicity of the scoring
function allows many candidate molecules (�50,000 per day) to
be generated quickly and, at the same time, evaluates their
binding affinities accurately. The large number of available
molecular fragments allows the algorithm to probe a range of
structural types that is less constrained than that of experimental
combinatorial methods, whereas the Monte Carlo growth
method focuses the search toward strong binders and ensures
that the ligands generate a sample of a large conformational
space within the active site of the protein.

As a proof of principle for CombiSMoG, we used it to design
new inhibitors for HCA metalloenzyme—a medically important
(22) and structurally well defined protein for which a high quality
x-ray structure (23) is available. We explored a family of ligands
based on a well-characterized benzene sulfonamide moiety. We
synthesized two of these molecules and compared their exper-
imental binding affinities with those predicted computationally;
we also obtained the crystallographic structures of the ligand–
HCA complexes. Predicted and observed binding constants, and
geometries, were in good agreement.

We chose the para-substituted benzene sulfonamide H2NSO2-
C6H4-CONH2 (BS) as the starting fragment for CombiSMoG
design. The binding orientation of this moiety is well established,
with the sulfonamide group (as the anion) coordinating to the
zinc atom in the active site of HCA. This fragment has three
advantages as a starting point for combinatorial simulations. (i)
BS is only a moderately strong binder [Kd � 120 nM at 25°C and
pH 7.5 (24)], and there is much room for improving binding
affinities in the designed molecules. (ii) There are many well-
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characterized HCA inhibitors based on this moiety, against
which we could calibrate the performance of CombiSMoG. (iii)
By starting with the BS moiety, we avoid calculating interactions
involving the zinc atom. These interactions involve quantum
mechanical effects and cannot be accurately described by using
the potential of CombiSMoG; our choice, therefore, simplifies
the task of design.

The ligands were grown from one of the carboxamido hydro-
gens of benzene sulfonamide H2NSO2-C6H4-CONH2. We spec-

ified the maximum ligand size as 30 heavy (i.e., nonhydrogen)
atoms, and the number of ligands to be generated as 100,000.
This analysis took �60 h on an Octane UNIX station. The
several best ligands were further analyzed. Fig. 1B shows five
top-scoring candidates generated by CombiSMoG. The struc-
tures of these molecules do not show any internal chemical
incompatibilities and most are relatively easy to synthesize. To
relieve conformational stress and Van der Waals clashes, we
performed a local minimization of the five top-scoring ligand–
HCA complexes by using the CHARMM force field (25), and
recalculated the CombiSMoG scores of the candidates. The
R-stereoisomer of the methyl-indole ligand (colored red in Fig.
1B) with the lowest score was the obvious candidate for synthesis.
The indole group contacted a hydrophobic patch defined by
Phe-131 and made favorable contacts with Phe-131 and Leu-92;
the methyl group fitted nicely into another hydrophobic com-
partment where it interacted with Leu-198 and Pro-202 residues
(Fig. 2A). An additional reason to test this compound was that
its S stereoisomer (colored blue in Fig. 1B) also had a low

Fig. 2. A shows schematically the interactions of HCA II with the R (Left) and
S (Right) stereoisomers grown by CombiSMoG. The surface of the protein is
represented by a black curve, on which the approximate positions of the
protein residues contacting the ligand are indicated. Three distinct binding
pockets are separated by Pro-202 and Phe-131. The red arrows indicate the
contacts between the ligand and the protein residues. The predicted and x-ray
binding conformations of the R (Left) and S (Right) ligands are compared in B.
The conformations predicted by CombiSMoG are colored red, and the x-ray
difference electron density maps are shown in purple. These maps were
calculated with Fourier coefficients �Fo���Fc� and phases derived from the final
model less the inhibitor and active-site solvent molecules; their contours are
at 2 sigma. The fits to the electron density maps are shown in yellow. There are
two different viewing angles: the top shows the contacts formed by methyl
groups, and the bottom illustrates the interactions of the indole group with
the protein. The protein residues making contacts with these groups are
marked by letter codes.

Fig. 1. (A) illustrates the principle of the CombiSMoG algorithm. The design
begins with specifying a starting molecular fragment (dark green) within the
binding region of the protein (light green); this fragment can be as small as a
single hydrogen atom, or can consist of several heavy atoms. In the first step,
a functional group (dark blue) from a diverse library of 100 common organic
groups is joined by a single bond to the starting fragment. The new fragment
is rotated around the newly formed bond in increments of 60°, and the
conformation without steric clashes and with the lowest CombiSMoG score
(which has the meaning of free energy) is chosen. The CombiSMoG score g per
heavy atom of the newly formed molecule gn is compared with that of the
starting fragment gs. If the difference in scores �g � gn � gs is less than zero,
the newly formed molecule is always accepted, and if it is greater than zero,
the probability of acceptance is proportional to exp(��g�T). The above
sequence is repeated for each new fragment added to the currently accepted
structure. The ligands are grown until a stop condition (usually a maximum
number of heavy atoms) is matched. The structures and CombiSMoG scores of
the five top-scoring inhibitors of HCA are shown in B. The scores of the
structures minimized in CHARMM are in parentheses. The R and S stereoisomers
that were subsequently synthesized and tested are colored violet and blue,
respectively.
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CombiSMoG score. In the S isomer, the methyl group was
predicted to be in the same hydrophobic pocket as in R, but the
indole moiety contacted another hydrophobic patch (Fig. 2A)
defined by residues Phe-131, Val-135, Leu-204, and Pro-202.
This pair of stereoisomers offered a test of the accuracy of the
program in dealing with subtle structural differences.

The synthesis of the stereoisomers is described in supporting
information, which is published on the PNAS web site, www.
pnas.org. We measured the binding affinities of the isomers by
using a competitive binding assay (26), in which the ligand to be
tested displaces an inhibitor of known binding constant (dan-
sylamide, Kd � 826 nM) from the binding pocket of the enzyme.
The binding constants were measured to be Kd � 30 (�15) pM
for the R stereoisomer and Kd � 230 (�45) pM for the S
stereoisomer. To our knowledge, the R stereoisomer is the
highest-affinity inhibitor of HCA II now known (27).

The crystal structures of the complexes were of good quality
and showed good agreement between experimental and pre-
dicted binding modes. The overall structure of HCA in each of
the enzyme-inhibitor complexes was effectively indistinguishable
from that of the native enzyme, with the rms deviation of 258 C�

atoms of 0.19 Å in the R stereoisomer complex and 0.29 Å in the
S. The electron density corresponding to the bound inhibitor
molecule was well defined in both stereoisomers (Fig. 2).

The x-ray structures of the ligands were compared with the
conformations predicted computationally (Fig. 2B). The posi-
tion of the starting fragment is nearly identical for both R and
S, with the nitrogen atom of the sulfonamide coordinating to
zinc. Also, in both stereoisomers, the methyl groups are posi-
tioned in the pockets predicted by CombiSMoG; the distances
between the predicted and observed locations of methyl carbons
are 0.85 Å for the R stereoisomer and 2 Å for the S. The atoms
of the aliphatic links between the starting fragment and the
nitrogen atom of indole are well superimposed with an rms

deviation (rmsd) of 0.52 Å in the R ligand and 0.88 Å in S. The
indole groups in both stereoisomers contact the binding pockets
predicted by the program. The R isomer is slightly displaced
away from Phe-131 and toward Val-135 (rmsd � 2.84 Å). In the
S ligand, the predicted orientation of indole is ‘‘f lipped’’ com-
pared with the x-ray structure, with the six-membered rings
roughly aligned, but the five-membered rings pointing toward
Phe-131 in the CombiSMoG prediction and toward Pro-202 in
the x-ray; the rmsd of the indole positions in S is 3.15 Å.

Any computational algorithm for drug design is validated only if
its predictions correlate with observed binding constants. Because
the measured binding constant of the R-stereoisomer is �7 times
smaller than that of the S isomer, we expect the CombiSMoG score
of R to be lower than that of S. Indeed, for both predicted and x-ray
structures, the scores for R are lower (�37.58 predicted; �30.5
x-ray) than for S (�23.42 predicted; �25.08 x-ray). Moreover,
because the CombiSMoG scores have the meaning of free energies
(13, 16), we also expect they should have a linear relationship to the
logarithms of the binding constants (Kd). This relationship is
observed for 20 ligands that have had their binding affinities
measured under the same conditions as our R and S isomers, and
for which the ligand–HCA x-ray structures are available (Fig. 3
Left). The ligands show roughly a linear dependence of logKd on the
computational score (correlation coefficient, 0.63; SD of logKd
from the linear fit, � � 0.59).

We further verified that the logarithms of the experimental
binding affinities correlate with the CombiSMoG scores for a
diverse set of ligands for several structurally unrelated proteins
(Fig. 3 Right). The correlation coefficients range from 0.46 for
sugar-binding proteins to 0.94 for serine proteases, and the SDs
from the linear fits are between 0.77 for serine proteases and 1.57
for metalloproteins. These results indicate that CombiSMoG
reproduces—and thus can be expected to predict—the experi-
mental binding affinities within a range of 1–2 orders of mag-

Fig. 3. (Left) Correlates the CombiSMoG scores with the logarithms of the binding constants Kd of all of the reported HCA inhibitors, for which binding assays
were carried out at 37°C and pH � 7.5, and for which the x-ray structures of the HCA-inhibitor complexes were determined. The red solid diamonds correspond
to inhibitors reported by others; the PDB access codes are given next to the markers. The black squares correspond to the structures of R and S inhibitors predicted
by CombiSMoG, and the blue circles denote the x-ray structures of R and S. The line is a linear fit to data. Chemical structures of the ligands are given in the
supporting information. (Right) This graph relates the CombiSMoG scores and the logarithms of the experimental binding constants of 80 ligands for five classes
of proteins (asp, aspartic proteases; met, metalloproteins; ser, serine proteases; sug, sugar-binding proteins; misc, miscellaneous proteins). The list of the PDB
access codes for all of the structures is included in the supporting information. The lines are linear fits to data. The correlation coefficients and the SDs from the
linear fits for each family of proteins are given in parentheses next to the linear fits.

1272 � www.pnas.org�cgi�doi�10.1073�pnas.032673399 Grzybowski et al.



nitude. We note that the slopes and the intercepts of the linear
fits can vary between the families of proteins, especially if the
ligand–protein interactions involve quantum-mechanical effects
for which the ‘‘classical’’ knowledge-based potential cannot
account. For example, the inhibitors of HCA had lower values of
logKd, by about 3 orders of magnitude, than ligands of other
proteins with comparable CombiSMoG scores. We speculate
that the quantum-mechanical nature of the interaction between
the sulfonamide moiety of a ligand (common to all of the ligands
in Fig. 3 Left) and the zinc atom in the active site of HCA is
responsible for this effect.

CombiSMoG is a new computational tool for designing protein
ligands that is based on the complementarity of the knowledge-
based potential and the dynamic Monte Carlo algorithm for ligand
growth. The simple coarse-grained potential allows rapid genera-
tion and evaluation of large numbers of structurally diverse—and,
at the same time, energetically biased—virtual ligands. The Monte
Carlo growth algorithm, in turn, benefits from searching a
smoothed (coarse-grained) energy hypersurface without being

‘‘jammed’’ in too many local energy minima. Although many
knowledge-based potentials and growth algorithms have been
developed in recent years (28–30), CombiSMoG is the only com-
putational method that uses these two components synergisti-
cally and permits realistic combinatorial chemistry, with use-
fully large numbers of ligands, to be carried out in silico. Our
method was validated experimentally by designing and testing new
potent ligands for a protein target. Strong correlations between
CombiSMoG scores and binding constants of known ligands for a
variety of structurally unrelated proteins suggest that our approach
should also be successful in designing binders for proteins other
than HCA. We believe that CombiSMoG will be able to generate
nanomolar and subnanomolar ligands consistently, and that its
predictions of binding affinity will have an uncertainty of approx-
imately 1–2 orders of magnitude.
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22. Botrè, F., Gros, G. & Storey, B. T., eds. (1991) Carbonic Anhydrase from
Biochemistry and Genetics to Physiology and Clinical Medicine (VCH, New
York).

23. Eriksson, A. E., Jones, T. A. & Liljas, A. (1988) Proteins Struct. Funct. Genet.
4, 274–282.

24. Jain, A., Whitesides, G. M., Alexander, R. S. & Christianson, D. W. (1994)
J. Med. Chem. 37, 2100–2105.

25. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, J.
& Karplus, M. (1983) J. Comput. Chem. 4, 187–217.

26. Chen, R. F. & Kernohan, J. C. (1967) J. Biol. Chem. 242, 5813–5823.
27. Grunberg, S., Wendt, B. & Klebe, G. (2001) Angew. Chem. Int. Ed. Engl. 40,

389–393.
28. Muegge, I. & Martin, Y. C. (1999) J. Med. Chem. 42, 791–804.
29. Nobeli, I. Mitchell, J. B. O., Alex, A. & Thornton, J. M. (2001) J. Comp. Chem.

22, 673–688.
30. Bohacek, R. S. & McMartin, C. (1995) Comput. Aid. Mol. Des. ACS Sym. Ser.

589, 82–97.

Grzybowski et al. PNAS � February 5, 2002 � vol. 99 � no. 3 � 1273

BI
O

PH
YS

IC
S


