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This paper is a theoretical study of dynamic self assembly in a
system of millimeter-sized magnetized disks floating at a liquid–air
interface and spinning under the influence of a rotating magnetic
field. Equations of motions are derived that account for the
hydrodynamic and magnetic forces acting in the system. Numerical
integration of these equations predicts formation of ordered
structures of spinning disks; the simulated structures reproduce the
patterns observed experimentally.

The formation of ordered structures by self assembly is
interesting both theoretically and practically, with implica-

tions for chemistry (1, 2), physics (3–5), materials science (6–9),
and biology (10–12). Although self assembly and self organiza-
tion in systems operating at or near thermodynamic equilibrium
are relatively well understood, the theoretical description of
dynamic self-assembling systems (13, 15)—those that operate
away from equilibrium and develop order only when dissipating
energy—is incomplete. In the absence of a general analytical
description of such systems, numerical analysis is a convenient
(and often the only) method for studying their dynamics.

In previous work (16, 17), we described a dynamic self-
assembling system composed of a limited number (�40) of
millimeter-sized magnetized disks floating on a liquid–air inter-
face and subject to an external magnetic field produced by a
rotating permanent magnet with a dipole length much larger (�6
cm) than the radii (�0.5 mm) of the disks. In the presence of the
rotating external field, the disks spin around their axes with
angular frequency equal to that of the external magnet (�
�200–1,200 rpm). All disks are attracted toward the axis of
rotation of the magnet and are repelled by one another by
hydrodynamic interactions associated with the motion of the
fluid surrounding the disks. The interplay between attractive
magnetic and repulsive hydrodynamic interactions in this system
leads to the formation of macroscopic patterns. We quantified
both the hydrodynamic repulsive force between the disks and the
central magnetic force acting on all disks. On the basis of the
experimental data for the simplest case of two interacting disks,
we derived the equations that describe the forces acting in the
system (17) and proposed that interactions in aggregates com-
posed of a larger number of disks can be treated pairwise.

This work describes the equations of motion of the rotating
disks and uses them to model self organization of different
numbers of such disks in ordered aggregates. The simulated
patterns are in excellent agreement with those observed exper-
imentally. Our model not only correctly predicts the symmetry
and dimensions of the aggregates at various rotational speeds but
also allows estimation of the frequencies of occurrence of
polymorphic patterns (i.e., different patterns that arise in the
same system). We identify dimensionless parameters that con-
trol the formation of the aggregates and compare and contrast
the results of our simulations with those for systems of two-
dimensional point vortices (18–20).

Derivation of the Equations of Motion
In the experimental system (Fig. 1a), all disks are fully immersed
in a fluid of viscosity �, uniform density � (�1.1 g�cm3 for the

mixtures of ethylene glycol and water used in most experiments),
and kinematic viscosity � � ��� (typically �10 cP), and they
rotate around their axes with angular velocity �. In aggregates
composed of two or more disks, the fluid motion associated with
spinning results in repulsive hydrodynamic interactions between
them. In our previous analysis (16), we approximated each
spinning disk i by a rigid sphere of radius ai equal to that of the
disk§ and suggested that the repulsive force between the spheres
is a low-Reynolds-number effect. If the motions of the liquid
around the rotating spheres were modeled as zero-Reynolds-
number flows, then—because of symmetry considerations—
there would be no net hydrodynamic force on either of the two
particles. Because the experiments clearly demonstrate the
existence of such force, we hypothesized that it is a consequence
of the fluid inertia (finite Reynolds numbers).

We considered (16, 17) a neutrally buoyant sphere of radius
a1 in a shear flow produced by a larger sphere of radius a2. The
smaller sphere experiences a lift force perpendicular to the local
direction of flow. The magnitude of this force, F12

h � O(�a1u
ReG), is proportional to the viscosity of the liquid �, the size of
the particle a1, its typical velocity u � �a1, and its Reynolds
number ReG � �Ga1

2��, which is based on the local shear rate
G. Because the shear rate produced by particle 2 in the neigh-
borhood of particle 1 is G � O(�a2

3�d3), where d is the distance
between the centers of the spheres, our analysis predicts an
inertially generated lift force F12

h � O(��2a1
4a2

3�d3). For arbi-
trary particles i and j, the repulsive hydrodynamic interaction
between them can be written in vectorial notation (Fig. 1b), as
Fij

h � ch��2ai
4aj

3(ri � rj)�dij
4), where ch is a constant of propor-

tionality, and dij � �ri � rj�. The force on sphere i acts along the
direction of dij and away from sphere j.

The magnetic force acting on a sphere i is directed towards the
axis of rotation of the magnet, varies approximately linearly with
the distance �ri� from this axis and depends on the volume of the
sphere, Fi

m � �cm�ri�ai
3, where cm is a constant.

Under the influence of the hydrodynamic and magnetic forces,
the spheres move in the fluid. Because in our experiments the
flow about a particle is in the low-Reynolds-number regime, the
particle moves relative to the fluid at a velocity Ui proportional
to the net force acting on it: Ui � ��1 (Fi

m � �j�i Fij
h), where � �

6��ai for a sphere. In addition, each sphere moves in the flow
created by the other spinning spheres composing an aggregate.
Because a single sphere j creates a velocity field uj(x) � aj

3� �
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§The model of two spinning spheres is simpler mathematically than that of two spinning
disks, and the differences should not be expected to affect the conclusions materially; the
lack of explicitness in accounting for the free upper surface of the spinning objects should
also not limit the conclusions. We verified experimentally that two magnetically doped
spheres, placed either at a liquid�air or liquid�liquid interface, repel each other via a
hydrodynamic repulsion qualitatively similar to that between two spinning disks. In our
experiments, we used disks, rather than spheres, because of the difficulties associated with
fabrication of uniform magnetically doped polymeric spheres �1 mm in diameter.
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x�x3 (where x is the position vector measured from the sphere’s
center; Fig. 1b), the velocity Vi at which any sphere i translates
is given by the sum of velocity fields produced by the remaining
spheres at the location of i: Vi � �j�i uj(ri � rj).

Adding the component velocities Ui and Vi, the equations of
motion describing the dynamics of an aggregate composed of N
spinning spheres can be written as

ṙ i � Vi � Ui

� �
j 	 i

uj	ri 
 rj
 � ��1�Fi
m � �

j 	 i

Fij
h� , i

� 1, . . . N [1]

ṙ i � �
j 	 i

aj
3� � 	ri 
 rj


�ri 
 rj�3
� 	6��ai


�1

��cm�ri�ai
3 � ch��2ai

4�
j 	 i

aj
3	ri 
 rj


�ri 
 rj�4 � , i � 1, . . . N. [2]

Introducing dimensionless parameters r̃i � ri�a0, t̃ � t�, and
�i � ai�a0 (a0 is the radius of the smallest particle in an

aggregate), the equations of motion can be written in nondi-
mensional form:

d r̃ i

d t̃
� �

j 	 i

�j
3 ẑ � 	 r̃ i 
 r̃ j


� r̃ i 
 r̃ j�3
� Ai� r̃ �i

� Bi �
j 	 i

�j
3	 r̃ i 
 r̃ j


� r̃ i 
 r̃ j�4
, i

� 1, . . . N, [3]

where Ai � �(cma0
2�i

2�6���) and Bi � (ch��a0
2�i

3�6��).

Pattern Formation
(i) Calibration of Parameters Used in the Simulation. The formation
of ordered aggregates of spinning disks was studied by numerical
integration of the equations of motion. The relative value of the
magnitudes of the constants ch and cm characterizing the hy-
drodynamic and magnetic interactions, respectively, was found
from the experimental dependence of the separation d of two
1.27-mm disks on the angular speed �. Because the stable
aggregate formed by two disks is symmetric with respect to the
origin, the magnitudes of the position vectors of the disks are
equal (i.e., �r1� � �r2�) and, consequently, d � 2�r1� � 2�r2�. Using
this relationship and equating the magnitudes of hydrodynamic
and magnetic forces at equilibrium, we obtain cm�ch � 2��2a4�
d4, which on substitution of the numerical values characteristic
of the experiment (16, 17) was found to be �17. The magnitude
of cm was estimated by placing one 1.27-mm disk at specified
distances �r� from the origin and measuring the distance in the
radial direction the disk covered in one second; the value of the
constant was cm � 0.32 (g�mm�3 s�2).

(ii) Unique Patterns. Fig. 2 summarizes the results of simulations
performed for N � 2–9 identical disks, 1.27 mm in diameter and
rotating at � � 500 rpm. We have previously performed
experiments (17) using disks of this size for values of � ranging
from 300 to 900 rpm; thus, the patterns that emerged from
modeling could be compared directly with the experimental
ones. For identical disks, all �is were equal to 1, so that only two
parameters, A � �0.00131 and B � 0.21088, were necessary to
describe the dynamics of the system. The initial positions of the
disks were chosen randomly within 20 disk diameters from the
center of the magnetic field, and the system was allowed to evolve
for 10,000 steps; the patterns shown in Fig. 2 are stable config-
urations reached at the end of the dynamics run. These patterns
were unique, that is, no other arrangements of the disks (poly-
morphs) were recorded when the simulations were repeated
several (�20) times with different initial conditions. This finding
agreed with the experimental observation that for N � 10,
groups of disks always evolved to a unique structure. The
experimental and simulated patterns were isomorphic.

The simulations correctly reproduced not only the ordering
but also the dimensions of the aggregates. For N � 2, the
distance between the centers of the disks was 2.78 mm, compared
to the experimental value of 2.8 mm. For N � 2, the average
distance between the nearest-neighbor disks agreed with the
experimental value to within 0.1 mm. For N � 6, the simulation
correctly predicted the distance between the central disk and the
disks in the first shell to be longer by a factor of 1.13 (�1.1 in the
experiments) than the distance between the nearest-neighbor
disks within the shell. The model also accounted for the opposite
trend in the aggregate with N � 8, in which the ratio of these
distances was 0.85 (�0.8 in the experiments). Finally, for N � 9,
the distance between the two central disks was shorter than

Fig. 1. a illustrates the experimental arrangement. Circular disks were made
of hollow polyethylene tubing (�1 mm in diameter) filled with poly(dimeth-
ylsiloxane) (Dow-Corning) doped with magnetite (15% by weight). The disks
were placed at an ethylene glycol–water (3:1 by volume)�air interface, so that
they were fully immersed in the liquid except for their top surface. A perma-
nent bar magnet (IKA Labortechnik, Staufen, Germany) of dimensions L � 5.6
cm � W � 4 cm � T � 1 cm was placed �3 cm below the interface and rotated
with angular velocity �. The magnet was magnetized along its longest di-
mension and had magnetization M � 1,000 G�cm3. Magnetic force Fm

i attracts
disk i towards the axis of rotation of the magnet. The spinning disks repel each
other by pairwise hydrodynamic forces Fh

ij. The entire aggregate slowly pre-
cesses at � � 5 rpm around the axis of rotation of the magnet. The schematic
in b defines the parameters used in the calculations. Disks composing an
aggregate are approximated by rigid spheres; the radius of sphere i is equal to
that of a corresponding disk. The position vectors r originate at the intersec-
tion of the axis of rotation of the magnet and the plane of the interface O and
are confined to the plane of the interface.
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between the disks of the outer shell by 20%, again in good
agreement with the experiment.

(ii) Polymorphic Patterns. We have previously demonstrated ex-
perimentally (16, 17) that for certain values of N � 9, the disks
can evolve into more than one stable configuration. We wished
to reproduce the formation of these polymorphic patterns in our
simulations. We modeled the dynamics of the aggregates com-
posed of N � 10 to N � 16 disks (1.27 mm in diameter) at two
rotational speeds, � � 500 rpm and � � 700 rpm. To quantify
the frequencies of occurrence of the polymorphs, we performed
100 runs for each value of N (with different initial conditions)
and recorded how many times a given configuration was
achieved. Fig. 3 shows the stable configurations observed in the
simulations. In two cases, for N � 11 and N � 13, only one
pattern was observed at both values of �; these patterns were also
unique in the experiments. Other numbers of disks produced
polymorphs. For N � 10, the structure with a pair of disks in its
center (denoted {2,8}, where the numbers give the occupations
of, respectively, the inner and the outer shells within the
aggregate) was seen more frequently than the structure with a
triangular ‘‘core,’’ {3,7}. In the experiments, both structures
appeared with roughly equal frequencies at 700 rpm, but at 500
rpm, {2,8} was observed in �90% of cases. We note that the
simulations, in agreement with the experiment, predicted the
inner two disks in the {2,8} aggregate to precess a bit slower than
the outer ring (the outer ring is ‘‘sliding’’ past the inner pair). In

simulations with N � 12 disks, the {4,8} polymorph formed
slightly more frequently than the {3,9} one. In reality, the {4,8}
structure was the predominant one at 700 rpm. At 500 rpm, the
two structures interconverted in time, and after �30 min usually
(though not always) equilibrated into the {3,9} structure.

For N � 14, the {4,10} structure was the only one observed
at � � 700 rpm, in both the simulations and in the experiment.
Two structures, {4,10} and {5,9}, were predicted to be stable at
� � 500 rpm, and both were achieved experimentally, the {4,10}
aggregate being the more frequently observed. For N � 15, only
one structure, {5,10}, was formed in the simulations at � � 500
rpm; this structure was also unique in the experiments. The
{5,10} aggregate was also the exclusive product of the experi-
ments at � � 700 rpm. The simulations at this angular speed
resulted in the {5,10} structure in 91 runs, but in 9 runs, a {1,5,9}
aggregate, not seen in the experiments, was formed. Finally, for
N � 16, all forms shown in Fig. 3 were seen in the experiments,
with frequencies close to those predicted by the modeling.

As in the case of smaller assemblies (N � 9), modeling was
successful in correctly reproducing the sizes of the experimental
aggregates at both values of the rotational speed. The simula-
tions correctly predicted the dominant polymorphs and, with one
exception—{1,5,9}—all structures obtained in the simulations
were observed in the experiments. On the other hand, the
frequencies of occurrence obtained from the modeling should be
taken only as approximate measures of the frequencies of oc-
currence of the experimental structures: they are significant
when one polymorph is a dominant one, but not when the
stability of polymorphs is similar (e.g., interconverting patterns
for N � 12 at 500 rpm).

(iii) Patterns of Low Symmetry. Some of the most intriguing
patterns observed in our experiments were those formed when
one disk was substantially larger than the remaining ones: these
patterns often had only one plane of symmetry. We wanted to
investigate whether our model would account for the existence
of such low-symmetry structures. Specifically, we modeled the
system of one large disk (2.42 mm in diameter) and N � 1–7
smaller disks (1.27 mm) rotating at � � 500 rpm; we chose this
system because we had complete experimental data for it.

Fig. 4 shows the simulated aggregates. For N � 6, the small
disks moved in a ‘‘train’’ on an orbit around the large disk. The
nearest-neighbor distance between the small disks was �6 mm
for N � 2 and decreased to �3 mm for N � 5; this distance was
shorter (by �10–35%) between the disks in the center of the
‘‘train’’ than between those near its edges. The large disk
precessed around the axis of rotation of the magnet (center of
the magnetic field) and the distance between its center and that
of any of the small disks was �4.2 mm. All these observations
were in excellent agreement with the experiments (17).

For N � 6, there were two stable structures: one, in which the
small disks formed a closed shell around the large disk, and a
second, in which the small disks organized into a ‘‘train.’’ Both
of these structures were observed in experiments. For N � 7, the
small disks formed a closed shell around the large disk—again,
in agreement with experiment.

We brief ly mention that analytical studies of systems of
point vortices of unequal strengths (21, 22) indicate that the
symmetric forms (that is, structures in which small disks are
distributed equally along the perimeter of the circle along the
central vortex) become unstable at certain values of control-
ling parameters. Yet, as we have verified, the ideal, point–
vortex equations of motion do not evolve randomly positioned
vortices into low-symmetry structures such as those obtained
in our simulations.

Comparison with the Point–Vortex Model. Because the interactions
between the spinning particles in our system are mediated by

Fig. 2. Simulated stable aggregates of N � 2–9 disks 1.27 mm in diameter,
rotating at angular velocity � � 500 rpm. The dimensionless parameters used
in the calculations were A � 
 0.00131 and B � 0.21088. The simulations
were started from random initial positions of the disks within 20 disk diam-
eters from the origin. Each run consisted of 10,000 steps. For each N, 20 runs
were performed. The patterns presented here were unique, i.e., no other final
configurations of the disks were observed. In addition to each disk rotating
around its axis, the entire aggregate precesses around its center.
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vortices produced by these particles in the surrounding fluid, it
might appear that a simple model of two-dimensional interacting
point–vortices would be sufficient to describe the dynamics of
our disks. Although the point–vortex model predicts stable

patterns of vortices graphically similar to those formed by the
spinning disks, its quantitative predictions are not in agreement
with our experiments. In particular, this model fails to account
for: (i) the dependence of the spacing between the spinning disks

Fig. 3. Simulated stable aggregates of N � 10–16 disks 1.27 mm in diameter, rotating at angular velocity � � 500 rpm (A � 
 0.00131 and B � 0.21088,
two columns on the left), and � � 700 rpm (A � 
 0.000936 and B � 0.2952, two columns on the right). For N � 11, 13, the stimulated patterns were unique.
For N � 10, 12, 14, 15, 16, polymorphs were observed. The relative frequencies of occurrence of the polymorphs are given by the numbers above the patterns;
these numbers are based on 100 simulation runs (104 steps, random initial positions) for each N. Each of the aggregates shown precesses around its center.
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on the parameters A and B describing the system, and (ii) the
evolution of disks to the experimentally observed structures.
According to calculations based on the point–vortex model (20),
the assemblies of our disks sometimes correspond to the high
free-energy polymorphs, whereas we do not observe the calcu-
lated low free-energy forms. For example, for N � 9, we never

observed, either in the experiments or in the simulations, the
{1,8} structure that the point–vortex model predicts to be
the lowest-energy configuration for this number of vortices (the
complete table of the free energies of stable configurations of
point vortices up to N � 19 can be found in ref. 20).

The differences between the results of our simulations and
those based on the point–vortex model reflect different physical
assumptions underlying both approaches. The point–vortex
model assumes infinitely small vortex core, inviscid fluid, and no
central potential; these assumptions do not hold in our system.

We suggest that our theoretical description is adequate for
systems of interacting vortices (i) that are subject to a central
confining potential, (ii) in which the dimensions of the core of
the vortex are of a size similar to the spacing between the
vortices, and (iii) in which the length of the vortex filament is
comparable to its width.

Conclusion
The nondimensionalized equations of motion allow the study of
self assembly at different values of phase-space parameters A
and B. With the aid of these equations, the morphologies of the
aggregates can be predicted a priori for various radii of the disks,
and their rotational speeds and magnetic contents.

This study suggests that our experimental system, to a good
approximation, is deterministic: polymorphic patterns and low-
symmetry structures are not emergent but can be deduced from
the equations of motion and initial positions. More recent
experimental results with magnetized plates of low symmetries
(e.g., comma-shaped plates; B.A.G. and G.M.W., unpublished
work) show that the hydrodynamic interactions can be made
multibody, and the entire system can exhibit qualitatively dif-
ferent behaviors (e.g., shape-selective aggregation of spinners).
In other words, relatively small adjustments of the shapes of
individual spinners can lead to large-scale changes in the aggre-
gates. We hope that the equations we developed here, with
necessary adjustments, will be applicable to the dynamics of
systems of plates of lower symmetry. Even if they cannot
faithfully reproduce their behaviors, they might prove valuable
in assessing the limits of deterministic modeling of interacting
vortex flows.
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Fig. 4. Simulated low-symmetry patterns in aggregates composed of one
large disk (2.42 mm in diameter) and N � 1–6 small disks (1.27 mm in
diameter) rotating at � � 500 rpm. For N � 1–5, the patterns were stable. For
N � 6, the trailing small disk moves slower than the remaining small disks, and
the morphology of the aggregate changes periodically in time. All simulations
were done for 10,000 steps. The small white squares indicate the location of
the origin (that is, the axis of rotation of the external magnetic field) around
which the aggregates precess.
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