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ABSTRACT

This paper describes a technique for fabricating three-dimensional, metallic, pyramidal microstructures with base dimensions of 1 =2 pm, wall
thicknesses of ~100-200 nm, and tip-curvature radius of ~ ~50 nm. The procedure begins with the fabrication of pyramidal pits in the surface

of an n-doped silicon substrate. An electrically insulating surface layer of SiO » covers the regions outside the pits. These pits are patterned
using either conventional photolithography or soft lithography and formed by selective anisotropic etching. The resulting topographically

patterned silicon serves as the cathode for the selective electrodeposition of metal in the pyramidal pits. Removing the silicon template by

etching generates free-standing, pyramidal, metallic microstructures.

This paper describes a technique for fabricating three- silicon substrate without a seed layer has also been used for
dimensional, metallic, pyramidal shells, the walls of which the fabrication of metallic microstructures for microelectro-
have a thickness 6100 nm. This method uses as templates mechanical systems (MEM$}.2® The method described
pyramidal pits of uniform size formed in n-doped silicon by here for fabricating free-standing, metallic, pyramidal shells
anisotropic etching; electroplating using the silicon making combines patterning and anisotropic etching of silicon with
up the pits as the cathode led to selective growth of the electrodeposition. The method comprises three principal
deposited metal. Subsequent dissolution of the silicon steps: (i) fabrication of the pyramidal pits in the silicon
substrate released the metallic pyramidal shells into suspensubstrate; (i) deposition of metal on the walls of these pits
sion. This work demonstrates a technique for the fabrication by electroplating; (iii) dissolution of the silicon template to
of free-standing, metallic, pyramidal shells having a uniform generate free-standing, pyramidal, metal shells.
size and provides a route to another class of micro- or  paprication of Pyramidal Pits on a Silicon Substrate.
nanostructure that is potentially useful for bottom-up self- Step 1 in Figure 1 outlines two methods that we used to
assembly 2 and for other uses in micro- and nanofabrication. generate silicon templates with pyramidal pits. In both
A limited number of shapes, including spheres, hemi- methods, we chose an n-doped Si wafer (resistivily002-
shells, rods, prisms, and cubes, can be prepared as sma[l)_0049,cm) with a thermally generated Siayer (~200

metal particles with uniform siz&€? The use of templates nm) as the substrate; the insulating layer of SéBsured
in the formation of metal structures with different shapes is 4t the electroplating of metal occurred exclusively in the

common: examples include mesoporous silica and zeolites. 4, ctive pyramidal pits, not on the top surface of the
or anodic alumina membranes as template for fabricating template

nanowires}%12 nanowires or nanoparticles as templates for

fabricating tubular or shell structuré?-16 and otherd’-19 The first method for fabricating the template is based on

We have described previously the fabrication of metallic half- gonventlonal photollthography (as_ shown in F|gu.re 1a). We
shells with diameters of 166600 nm and walls that were first exposed the photoresist (Shipley 1805) using a mask

8—15 nm thick by e-beam evaporation deposition of a thin, patternzd r\]Nitthtm'Wiqe Iine§ spz?\cedhby Am. We ﬂllen d
metal film onto an array of spherical silica colloids, followed exposed the p otore§|st again using the same mask rotate
by dissolution of the colloidal templafe. by ~90° to create a grid of 2¢m x 2-um squares. We coated

Anisotropic etching of single-crystal silicon substrates has th'z T:)udbs‘tlr(;ate with a Iaytl'-:r (:f T (b5 nm, ahs an aldhesmrljlayer)
been used extensively for fabricating sharp tips for atomic an (40 nm) using electron-beam physical vapor deposi-

force microscopy® Electroplating directly onto a doped tion. We.sonlcgted the sample in acetone to remove thg
photoresist. This sequence of steps generated a Ti/Pd grid
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Figure 1. Scheme for the fabrication of metallic pyramidal shells,
using (A) photolithography and (B) soft lithography.

ion etch (a Nexx-Cirrus 150 RIE with GFplasma at 15
mTorr for 240 s). The pattern of Sidormed in this step
served as a mask for the anisotropic etching of the underlying
silicon in KOH/i-PrOH?24-26

The second method used to generate the pyramidal pits
on the SiQ/Si substrate started with soft lithography (Figure
1B) 2728 We first deposited a layer of Ti/Pd (5 nm/40 nm)
onto a SiQ/Si surface using physical vapor deposition. We
then used a PDMS stamp patterned withr2d-wide parallel
lines to print a SAM of hexadecanethiol £SH) on the
palladium surface, keeping the stamp in contact with the
surface for 5 s. We removed the stamp and placed it back
into contact with the surface with the orientation of the Figure 2. Scanning electron micrographs (SEMs) of (A) the
pattern rotated by~90° from the first printing. These two  anisotropically etched silicon substrate with pyramidal pits fabri-
steps produced a square grid of the thiol ink. Chemical cated using_photolithc_)graphy; (B)_the aniso_tropically etched silicon
etching with iron(lll)-based etchant (Palladium Etch TFP ;ﬁgsggaggéthﬁyé?gﬁgél‘;ttzoflar?iglf;tfed using soft lithography; (C)
from Transene, Inc., Danvers, MA) removed the palladium/
titanium (Ti/Pd) film in the areas not coated by the tHl. - 20 .
Anisotropic RIE of SiQ with CF, and of silicon with KOH, whole §|I|con substraté”,: i V\{e assume that adding the
generated pits with pyramidal shapes in the silicon substrate.conducting backplane minimized IR drops across the wafer
Immersion of the substrate in an aqua regia solution (HCl/ @d equalized the potential in all of the pits. Before
HNO; = 3:1) for 10 s removed the remaining Ti/Pd film electroplating, we pretreated the silicon substrate with 1%
from the surface. Figure 2A,B shows pits with a pyramidal HF solution for 1 min. This treatment improved the
shape in a silicon substrate, fabricated using photolithographyuniformity of the initiation of metal deposition on the silicon
and soft lithography, respectively. surface (perhaps by removing a Si6urface layer). The

Electroplating Metal on the Exposed Conductive Sili-  €lectroplating occurred exclusively in the pits; the thick SiO
con Surface.We used the n-doped silicon substrate with layer successfully insulated the top surface of the substrate.
pyramidal pits as the cathode for the electrodeposition of Figure 2C is an SEM image of the silicon substrate with
metals (e.g., nickel, gold, or palladium). Coating the backside pyramidal pits filled with nickel after electroplating at 15
of the silicon cathode with a 200-nm thick gold layer was mA/cn? (calculated for the entire area of the substrate, not
necessary to achieve uniform electrodeposition across thejust the surface of the pits) for 30 s using a commercially
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fields that will be useful in studies involving surface
plasmons or magnetic field concentrators.
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