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This article describes the process of formation of droplets and bubbles in microfluidic T-junction

geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental

results support the assertion that the dominant contribution to the dynamics of break-up arises

from the pressure drop across the emerging droplet or bubble. This pressure drop results from the

high resistance to flow of the continuous (carrier) fluid in the thin films that separate the droplet

from the walls of the microchannel when the droplet fills almost the entire cross-section of the

channel. A simple scaling relation, based on this assertion, predicts the size of droplets and

bubbles produced in the T-junctions over a range of rates of flow of the two immiscible phases,

the viscosity of the continuous phase, the interfacial tension, and the geometrical dimensions of

the device.

1. Introduction

There is a growing interest in microfluidic techniques for

highly controlled formation of droplets1–12 and bubbles.13–18

One of the most frequently used microfluidic geometries to

produce immiscible fluid segments is a T-junction.3,5,8,19,20 In

spite of the popularity of the T-junction geometry, neither the

process of break-up, nor a quantitative analysis of the sizes of

the droplets it produces, have been detailed, and only partial

observations are available.3,21 Here we study the process,

scaling characteristics, and mechanism of break-up of liquid

and gas streams in T-junctions over a wide range of rates of

flow and viscosities of the fluids. The class of the T-junction

geometries that we tested is representative of those used in

analytical microfluidics. In particular, we focused on planar

geometries, with rectangular cross-sections of the channels, in

which (i) the width of the main channel is similar or greater

than its height, and (ii) the inlet channel is comparable in width

to the main channel.

We find that at low values of the capillary number—when

the interfacial forces dominate the shear stresses—the

dynamics of break-up of immiscible threads in T-junctions is

dominated by the pressure drop across the droplet or bubble as

it forms. In this squeezing regime the process of break-up is

similar to the rate-of-flow-controlled break-up that we

described previously16 for flow-focusing geometries, and the

size of the droplets or bubbles is determined solely by the ratio

of the volumetric rates of flow of the two immiscible fluids.

This characteristic leads to a simple scaling law for the size of

the discrete fluid segments:

L/w = 1 + aQin/Qout (1)

where L is the length of the immiscible slug, w is the width of

the channel, Qin/out are the rates of flow of the dispersed and

carrier fluids respectively, and a is a constant of order one,

whose particular value depends on the geometry of the

T-junction. The scaling relation (eqn (1)) is independent of

the material parameters of the fluids—their viscosities and the

interfacial tension between them. This effect is specific to

microsystems: at rates of flow (1022 to 1 mL s21) that are

typically used for flow in microchannels (having characteristic

dimensions on the order of 100 mm), the capillary numbers

(Ca = mu/c, where m is the viscosity, and u is the mean speed of

the carrier fluid, and c is the interfacial tension) are typically

small (Ca , 1022). As a result, the shear stresses exerted on the

interface of the emerging droplet are not sufficient to distort it

significantly. Consequently, the droplet (or bubble) blocks

almost the entire cross-section of the main channel and

confines the flow of the carrier fluid to thin wetting films on

the walls of the microchannel. This leads to an increase of

pressure upstream of the emerging droplet and leads to

‘squeezing’ of the neck of the immiscible thread. Squeezing

proceeds at a rate proportional to the rate of flow of the carrier

fluid, and sets the time for the growth of the droplet or bubble;

this growth, in turn, proceeds at a rate proportional to the rate

of flow of the dispersed phase. Collecting these two effects into

a single equation yields the scaling relation described by

eqn (1).

Importantly, as we observed experimentally and in numer-

ical simulations22 there is a critical value of the capillary

number (CaCR y 1022) above which the shear stresses start to

play an important role in the process of break-up, and the

system starts to operate in a mode similar to the dripping

regime in an unbounded, co-flowing liquid.23,24 Here we focus
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on the squeezing regime, as it corresponds to values of rates of

flow that are typical for those used in microfluidics. We

verified the accuracy and range of applicability of the scaling

relation (eqn (1)) experimentally by investigating the size of

droplets and bubbles as a function of the (i) rate of flow and

(ii) viscosity of the continuous fluid, (iii) the rate of flow, or the

pressure applied to the discontinuous stream, (iv) the presence

or absence of surface-active additives, and (v) the geometrical

dimensions of the device. We detail the mechanism of break-up

and the ranges of rates of flow, pressures, and material

parameters (viscosity, interfacial tension) that promote stable,

controllable formation of monodisperse liquid–liquid and gas–

liquid emulsions in microfluidic devices.

Flow in microchannels

Flow of fluids in microfluidic systems are usually characterized

by low values of the Reynolds number (Re = rul/m, with r and

m being the density and dynamic viscosity of the fluid

respectively, u the speed of flow, and l the characteristic

dimension of the system). For Re % 1 flow is dominated by

viscous stresses and pressure gradients—inertial effects are

negligible—and the trajectories of fluidic particles can be

controlled precisely.25 This control26 has led to a number of

applications,27 including, exposure of living cells to contin-

uous28 and step29 changes of concentration of bio-active

molecules or temperature, high-throughput screening,30 and

lab-on-chip immunoassays.31

Bubbles and drops in microfluidics

In recent years several groups have extended the use of

microfluidic systems to multiphase flows with a special interest

in formation of dispersions. Several techniques exist for

formation of droplets1–12 and bubbles.13–18 These systems

enable formation of dispersions with highly attractive features,

particularly the control over the size and volume fraction of

the dispersed phase,3,6,14,15,32 and narrow distribution of the

sizes of individual droplets or bubbles.3,10,14,15 The use of

immiscible fluids, and the controlled formation of microscale,

individual fluid segments, both offer new routes to devices and

systems that would perform chemical reactions and physico–

chemical analyses on chip, using small volumes of reagents.

Several tools for—and demonstrations of—microfluidic chem-

ical processing based on droplets have already been

demonstrated, including mixing,5 controllable fusion and

fission of droplets and bubbles,33,34 crystallization of pro-

teins,35 synthesis of nanoparticles,19 and bioassays.36

Microfluidic dispersion-generators can also produce, in a

highly controllable fashion, solid particles37–41 and arrays of

liquid crystalline droplets.42

The use of the T-junction geometry

Perhaps the most popular microfluidic device used for the

generation of droplets is a T-junction geometry (Fig. 1), first

incorporated into a microfluidic chip by Thorsen et al.,3 and,

subsequently used for formation of droplets3,5 and bubbles,19

for characterization of mixing in segmented liquid–liquid5 and

liquid–gas19 flows, for formation of double emulsions8 and in a

host of analytical applications.20,43–45 Most of these applica-

tions require precise control over the formation of the

immiscible fluid segments. We have demonstrated control,

and developed an analytical understanding, of the mechanism

of break-up16 for a flow-focusing system generating micro-

bubbles at low values of the capillary number. Generation of

liquid drops in a flow-focusing setup has also been demon-

strated4,10 and characterized.46 Here we detail the process of

break-up and the scaling of the size of the discrete fluid

elements produced in the T-junction geometries over a range of

typical values of rates of flow and viscosities of the fluids.

2. Results and discussion—liquid–liquid systems

The geometry of a T-junction

Fig. 1a and b illustrate schematically the geometry of a

T-junction. Two channels merge at a right angle. The main

channel carries the continuous (or ‘carrier’) fluid and the

orthogonal channel (hereafter ‘inlet channel’) supplies the fluid

that will be dispersed (hereafter ‘dispersed’ or ‘discontinuous’

fluid). The channels have rectangular cross-sections, and there

are only three geometrical parameters that define the size and

shape of the T-junction: the width w of the main channel, the

width win of the channel supplying the discontinuous fluid and

the height h of the channels.

Break-up in a T-junction

A typical process of formation of droplets (or bubbles) in the

T-junction geometries that we studied can be described as

follows. The two immiscible fluids form an interface at the

junction of the inlet and main channel. The stream of the

discontinuous phase penetrates into the main channel and a

droplet begins to grow; the pressure gradient and the flow in

the main channel distort the droplet in the downstream

direction. The interface on the upstream side of the droplet

Fig. 1 (a) A schematic illustration of the microfluidic T-junction

composed of rectangular channels. The channels are planar and have

uniform height h. (b) A top view of the same schematic in a two-

dimensional representation. Flow along the main channel proceeds

from left to right. We flow the continuous fluid (here ‘oil’) along the

main channel of width w, and we supply the fluid that will be dispersed

(here ‘water’) via the orthogonal inlet of width win. In this work we

consider geometries in which 1 ¡ w/win ¡ 4. In inset (b) we

schematically show the interface between the two immiscible fluids.

We refer to the length L of the droplet as the distance between the

furthest downstream and upstream points along the interface of a fully

detached immiscible plug.
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moves downstream. When the interface approaches the

downstream edge of the inlet for the discontinuous phase,

the neck connecting the inlet channel with the droplet breaks.

The disconnected liquid plug flows downstream in the main

channel, while the tip of the stream of the discontinuous phase

retracts to the end of the inlet and the process repeats.

Over a wide range of rates of flow of both phases, this

process generates uniformly sized droplets. The volume of

these droplets can be adjusted by changing the rates of flow of

the dispersed phase (here: Qwater) and the carrier fluid (Qoil).

Fig. 2a,b illustrates this dependence and shows several

representative micrographs of the system at different values

of Qoil and Qwater. We are interested in how the sizes of the

droplets formed in a T-junction depend on the rates of flow,

the viscosity m of the continuous fluid, the viscosity md of the

discontinuous fluid (not studied here), the interfacial tension c

between the two phases, and the geometrical dimensions of the

device. In order to verify the influence of the geometrical

parameters, we performed experiments in five different devices

with dimensions listed in Table 1. In order to check the

dependence of the size of the droplets on Qwater, Qoil, m, and c

we used the ‘reference’ geometry numbered ‘1’ in Table 1 (h =

33 mm, w = 100 mm, win = 50 mm).

Available models of break-up in a T-junction

Thorsen et al.3 suggested that the droplets are sheared off from

the stream of the discontinuous fluid and the size of the

droplets is determined by the competition between the Laplace

pressure pL # 2c/r, where r is the characteristic radius of

curvature of the liquid–liquid interface, and the shear stress

exerted on this interface by the continuous fluid. This balance

led to the estimate r # ce/mu, where e is the characteristic

dimension of the space between the droplet and the wall of the

channel and u is the mean speed of the continuous liquid

through this gap. Although this estimate agreed3 with the

measured sizes of the droplets, the model was not verified

rigorously: the viscosity of the carrier fluid was not changed in

the experiments and thus it was not possible to distinguish

between the stresses exerted as a result of the build-up of

pressure upstream of the emerging droplet, and the shear

stresses acting on the tip of the discontinuous fluid. Tice et al.21

suggested that the change of viscosity of the continuous fluid

results in a change of the ranges of rates of flow at which the

system produces monodisperse droplets, but did not discuss

the influence of viscosity on the size of the drops. Here, we

describe experiments conducted in order to test the postu-

lated—‘shear dominated’—scaling relations. The results of

these experiments have led us to conclude that the size of the

droplets generated in T-junction geometries that are typically

used in microfluidic experiments is not determined by a

relation between the Laplace pressure and the shear stress, and

to suggest an alternative scaling that we discuss below.

Effect of viscosity of the continuous phase

To characterize the role of the shear stress exerted by the

continuous fluid on the interface in the break-up process we

measured the length L of the droplets produced in the

reference T-junction as a function of Qwater, at different values

of Qoil and m (Fig. 2c). For any fixed value of Qoil and m there

Fig. 2 Dependence of the length L of the aqueous droplets produced

in the T-junction (h = 33 mm, w = 100 mm, win = 50 mm), on the rates of

flow of the discontinuous (Qwater) and continuous (Qoil) phases. (a)

L(Qwater) for constant value of Qoil = 0.028 mL s21, (b) L(Qoil) for

Qwater = 0.14 mL s21. The Roman numerals correspond to the optical

micrographs shown below the figures, taken at Qwater = 0.004, 0.05 and

0.111 mL s21 for I, II and III respectively and Qoil = 0.417, 0.139 and

0.019 mL s21 for IV, V and VI respectively. (c) Dimensionless length of

the droplets (L/w) plotted as a function of the ratio of the rates of flow

of the discontinuous and continuous fluids for the reference geometry

(h = 33 mm, w = 100 mm, win = 50 mm). There are five different series of

data plotted on this graph, each corresponding to a different

combination of the viscosity (m) of the continuous fluid and its rate

of flow (Qoil). The legend is given in the figure. There is a hundred-fold

difference in the shear stress t 3 Qoilm between curves (#) and (&).

Table 1 The dimensions of the relevant geometrical parameters for
the five different T-junction devices that we tested in our experiments.
We refer to geometry 1 as the reference device

Geometry win/mm h/mm w/mm h/win w/win

1 50 33 100 2/3 2
2 50 33 50 2/3 1
3 50 33 200 2/3 4
4 100 33 100 1/3 1
5 50 79 100 y3/2 2
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are two distinct regimes characterized by different scaling of

L with Qwater: at low values of Qwater, L is constant, while in

the second regime L grows approximately linearly with

increasing Qwater. The system crosses over from L y constant

to L 3 Qwater approximately at Qwater = Qoil.

This behavior could be explained within the ‘shearing’

model: at low Qwater the flow of the discontinuous fluid would

be much slower than the flow of the host fluid around the

droplet, and therefore Qwater would not affect the balance

between the shear stress and the interfacial tension. At large

Qwater the shear stress exerted by the continuous liquid on the

droplet would decrease simply because the difference of the

speeds of the two fluids would decrease with increasing Qwater.

However, within this model, the size of the droplet at the

plateau (at low Qwater) would be determined by an equation of

the form3 L = O(ce/mu) and should depend on both the rate of

flow of the continuous fluid (u = Qoil/hw) and on its viscosity.

In our experiments we varied both m (10 and 100 mPa s) and

Qoil (0.00278, 0.0278 and 0.278 mL s21) and we observed that

the value of L in the plateau region does not depend on either

Qoil or m in spite of the fact that the values of the shear stress

t 3 mu span two orders of magnitude within the data shown in

Fig. 2c. As we do not observe even approximately two orders

of magnitude of a change in the size of the droplets, this

observation excludes the shear stress as the primary factor in

the break-up in the T-junction, and in determination of the

sizes of droplets. The assertion that shear is not primarily

responsible for break-up is consistent with the small values of

capillary numbers Ca = mu/c calculated for the same series of

data: Ca spans the range of Ca s (8 6 1025, 8 6 1023)

suggesting that interfacial tension dominates shear stress.

Finally, we note that the minimum size of the droplets that we

were able to form in these experiments was L y w (Fig. 2c).

This lower limit to size suggests that geometry of the device

plays a significant role in the break-up process.

Order-of-magnitude discussion of forces involved in break-up

Motivated by these observations, we wished to identify the

processes that contribute to the dynamics of pinch-off, and to

establish the effects that are dominant. There are three

different types of forces acting on the tip of the discontinuous

phase during break-up: the surface tension force (Fc), the

shear-stress force (Ft) and the force arising from the increased

resistance to flow of the discontinuous fluid around the tip

(FR). We estimate the magnitudes of these forces for the

geometry of the tip that is depicted in Fig. 3a. We observe this

geometry in the intermediate stages of break-up—that is after

the tip of the discontinuous phase has entered the main

channel, and before the immiscible thread breaks—and the

understanding of the balance of forces at this stage is, we

believe, crucial for drawing the correct model of the break-up

process.

Interfacial stresses

The surface tension force is associated with the Laplace

pressure jump DpL across a static interface, DpL = c(ra
21 +

rr
21), where ra is the axial curvature (in the plane of the device)

and rr is the radius of the radial curvature (in the cross-section

of the neck joining the inlet for the discontinuous fluid with the

tip). In the intermediate stage of the process of formation of a

droplet (Fig. 3a) the radial curvature is bounded by the height

of the channels (h , w) and rr # h/2 (or less) everywhere. The

axial curvature is greater at the downstream tip of the

Fig. 3 (a) A schematic illustration (top view) of the shape of the tip of

the immiscible thread at an intermediate stage of break-up. We denote

the separation between the liquid–liquid interface and the wall of the

main channel as e. The ‘length’ of the tip is on the order of the width w

of the main channel. The radii ra of axial curvature (in the plane of the

device) are ra
tip y w/2 (at the downstream side of the tip) and ra

up y w

(at the upstream side). Insets (a) and (b) show a schematic plot of the

postulated evolution of pressures at the T-junction during a typical

break-up process. Insets (a) and (b) illustrate the axial (in the plane of

the device) and radial (in the cross-section of the neck joining the inlet

for the discontinuous phase with the droplet) curvature, and the

positions at which we define the hydrostatic pressures pd and pc in

the discontinuous and continuous phases respectively. Inset (a) shows

the droplet in an early stage of collapse of the neck of characteristic

width d. Inset (b) shows the neck in the final phase of collapse, when

the radial curvature dominates the axial curvature, and break-up

occurs rapidly. We identify four stages of formation of a droplet: the

stream of the discontinuous fluid enters into the main channel (I), the

stream blocks the main channel (II), the droplet elongates and grows

downstream (III), the droplet separates from the inlet (IV). The

intervals between these stages are not uniform. (c) Evolution of the

Laplace pressure jump across the interface (DpL), (d) micrographs of

the reference system (h = 33 mm, w = 100 mm, win = 50 mm) for Qwater =

0.14 mL s21 and Qoil = 0.083 mL s21. The time lapses between

consecutive micrographs and the first one are given in the figure. (e)

Schematic illustration of the evolution of the hydrostatic pressure pd in

the discontinuous phase at the end of the inlet, pressure pc in the

continuous phase in the junction, and the difference pd 2 pL.
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immiscible thread (ra
tip # w/2) than at the upstream side of it

(ra
up # w): the interface on the downstream side of the thread

acts on the liquid inside the thread with a stress pL # 2c(2/w +
2/h) (the minus sign signifies that the stress is oriented

upstream), and the interface located upstream acts on the

discontinuous liquid with a stress pL # c(1/w + 2/h) (oriented

downstream). The sum of the two, multiplied by the cross-

section of the channel gives the estimate of the surface tension

force Fc # 2ch, oriented upstream, which has a stabilizing

effect on the tip: in the absence of any other stresses or forces,

surface tension would position the tip symmetrically about the

axis of the inlet channel for the discontinuous phase. When the

continuous fluid flows in the main channel, both the shear

stress exerted by the host fluid on the droplet and the pressure

drop along the axis of the main channel distort the emerging

droplet in the downstream direction.

Shear stress

We can approximate3 the shear stress exerted on the tip by the

continuous phase as: t # mugap/e where ugap = Qoil/he is the

speed of the continuous fluid flowing through the gap between

the interface and the wall of the channel (of characteristic

thickness e (Fig. 3a)). We estimate the net force acting on the

immiscible tip by multiplying the shear stress t # mQoil/he2 by

the surface area of the interface in the gap Agap y hw, where

we take w as the characteristic axial length-scale of the tip

(Fig. 3a). The corresponding net force on the tip is pointed

downstream and has the magnitude of Ft # mQoil(w/e2). This

calculation over-estimates the shear force for two reasons.

First, it assumes that the tip of the discontinuous fluid is

stationary when, if fact, the dispersed fluid flows downstream.

Second, it assumes that the volumetric flow of the continuous

fluid around the emerging droplet is equal to the externally

fixed rate of flow through the device (Qoil). In reality, the flow

at the T-junction is not stationary, and—as we explain in detail

below—once the immiscible tip blocks the cross-section of the

main duct, the continuous fluid displaces—squeezes—the neck

connecting the emerging droplet with the side-inlet channel. As

we only try to estimate the magnitudes of the forces acting on

the immiscible tip, we do not try to take these two effects into

account in the calculation, and only observe that both of them

act to lower the actual shear force exerted on the emerging

droplet.

Resistance to flow of the continuous fluid

The thread of the discontinuous fluid partially blocks the cross

section of the main channel (Fig. 3a) and leads to an increased

resistance to flow of the continuous fluid. For e y w we use the

Hagen–Poiseuille equation to estimate the pressure drop (Dp)

over the length (yw) of the immiscible tip: Dp # mQoilw/h2e2.

For e % w we estimate Dp for a thin film of typical or largest

thickness e, width h and length w (Fig. 3a): Dp # mQoilw/he3,

and the corresponding force FR # Dphw = O(mQoilw
2/e3). The

exact value of the exponent n to which the thickness of the film

e should be raised in the above expression can be derived from

a detailed lubrication analysis47 for flow around objects near-

filling the cross-sections of capillaries: n depends on the

geometry of the cross-section of the capillary and on the

geometry and material parameters of the object. Importantly,

n is larger than 2—e.g. in a circular capillary, a translating

rigid sphere or a clean bubble can be described with47 n = 2.5.

Consequently we can expect that FR > Ft when e % w.

To summarize the order-of-magnitude estimates of the

forces acting on the tip, we note that the only stabilizing force

arises from the surface tension effects. There are two

destabilizing forces, both of which increase sharply upon the

decrease of the separation e between the interface and the wall

of the main channel. In most of the geometries tested in our

experiments we observe that e/w % 1, and under such

conditions, we expect that the leading contribution in the

break-up dynamics is the force FR arising from the pressure

drop associated with the resistance to flow of the continuous

fluid around the immiscible tip.

Postulated model of break-up

On the basis of this analysis and observation, we postulate that

the dynamics of break-up in a typical T-junction (here the

reference geometry 1, see Table 1), is dominated by the balance

of pressures in the discontinuous (pd) and continuous (pc)

phases at the junction. We first draw a heuristic picture of the

break-up process, and propose the scaling relation arising from

this model. Then we compare the predictions of this model

with our experimental measurements.

We start with the analysis of the evolution of the Laplace

pressure jump DpL exerted on the discontinuous liquid by the

interface, DpL = c(ra
21 + rr

21), where ra is the axial curvature

(in the plane of the device) and rr is the radius of the radial

curvature (in the cross-section of the collapsing neck joining

the inlet for the discontinuous fluid with the droplet). In the

initial stage of the process of formation of the droplet, when

the tip of the discontinuous phase enters the main channel,

both the radial and axial curvatures are bound by the

dimensions of the inlet channel (win and h). When the tip

enters the main channel and grows in the downstream

direction, the shape of the interface of the upstream side of

the neck joining the droplet with the inlet evolves with time.

After the discontinuous phase fully enters the main channel,

the neck has a characteristic width d (Fig. 3a). Over time this

neck thins and finally breaks. The axial curvature of the neck is

smaller than that of the initial axial curvature of the tip of the

discontinuous fluid. The radial curvature of the neck is at first

(when d > h) bound by height of the channel rr , h/2. When

d , h, the neck assumes a circular cross-section of radius rr and

the radial curvature grows (Fig. 3b).

We identify four stages of the process of formation of a

droplet (Fig. 3c and d): (I) the tip of the discontinuous phase

enters the main channel, (II) the growing droplet spans the

whole cross-section of the main channel (e % w), (III) the

droplet elongates in the downstream direction and the neck

connecting it to the inlet thins (d decreases), and (IV) the neck

breaks, the disconnected droplet flows downstream and the tip

of the discontinuous phase recoils back towards the inlet.

Between the first and second stage the Laplace pressure

decreases (because the radial curvature is still bound by the

height of the channel and the axial curvature of the interface

located upstream of the tip decreases); this process continues
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until stage III, when d # h, and the radial curvature starts to

grow. The Laplace pressure reaches a maximum value at the

moment of break-up (as the radial curvature grows to infinity),

and after pinch-off pL relaxes back to the initial value.

Pressures in the discontinuous and continuous fluids during

break-up

A detailed model of break-up in the T-junction would consider

the total normal stress on the interface. In the region near the

droplet where there are thin films, the stresses are dominated

by the pressure contribution and thus we limit our discussion

to the analysis of the evolution of pressures in the discontin-

uous (pd) and continuous (pc) fluid at the junction during the

process of the formation of a droplet. Since we are only

interested in the difference of these two pressures, for

simplicity we assume that the pressure in the discontinuous

fluid at the end of its inlet remains constant throughout the

break-up process (long-dashed line in Fig. 3e). The net

pressure exerted by the discontinuous fluid on the host liquid

(pd 2 pL) is shown with a short dashed line. In stage one (I) the

tip of the discontinuous phase penetrates into the main

channel, hence pd 2 pL > pc. In stages II, III and IV, the

value of pc increases as a consequence of the increased

resistance to flow of the continuous fluid through the thin

films of characteristic thickness e. In stage II, e acquires its

minimum value (e % w), and consequently pc is now greater

than pd 2 pL and the upstream side of the interface of the tip

starts to travel downstream. In stage four the neck of the

immiscible thread breaks, the tip recoils to the inlet channel for

the discontinuous phase and the pressure in the continuous

phase drops to its unperturbed value.

Proposed scaling relation for the size of the droplets

On the basis of the above model of the evolution of pressures

at the T-junction during break-up, we draw the following

quantitative prediction for the size of the droplet. First the tip

of the discontinuous phase enters and blocks the main channel.

At this moment the ‘length’ of the droplet is approximately

equal to the width of the channel. The increased pressure in the

continuous fluid upstream of the immiscible thread starts to

‘squeeze’ the neck (of characteristic width d (see Fig. 3a)). The

thickness of the neck decreases at a rate which is approxi-

mately equal to the mean speed of flow of the continuous fluid:

usqueeze # u = Qoil/hw. During this process the drop elongates

at rate ugrowth # Qwater/hw. The final length of the drop is

therefore equal to: L # w + (d/usqueeze)ugrowth = w + dQwater/

Qoil. It is convenient to non-dimensionalize this equation to:

L/w = 1 + a(Qwater/Qoil), with a = (d/w), which recovers eqn (1).

Since some of the flow of the continuous fluid bypasses the

droplet and does not contribute to squeezing, and as the speed

at which the neck collapses need not be constant, etc., it is

reasonable to treat a as a fitting parameter of order one.

The two terms—the constant and the ratio of the rates of

flow—in the scaling of the size of the droplets can be

understood as follows. The time t to form the droplet is the

sum of the time it takes to fill the cross-section of the main

channel (tfill 3 1/Qwater) and the time to squeeze the neck

connecting the inlet channel with the emerging droplet

(tsqueeze 3 1/Qoil). The size of the droplet can be estimated as

the product of t and Qwater. When the rate of flow of the

continuous fluid is much greater than the rate of flow of

the dispersed phase (Qwater/Qoil % 1), t # tfill and the size of

the droplet is constant (L/w # tfillQwater # 1) simply because

once the droplet fills the cross-section of the channel it is

broken-off quickly (tsqueeze % tfill). In this regime, the size of

the droplets does not depend on the particular values of either

of the rates of flow. When (Qwater/Qoil > 1) t # tsqueeze and the

dominant contribution to the size of the droplet arises from

the inflow of the discontinuous fluid into the droplet during

the squeezing stage, and thus L/w 3 tsqueezeQwater # Qwater/

Qoil. In this regime, the size of the droplets depends crucially

on the particular values of each of the rates of flow.

Verification of the scaling effect of viscosity, interfacial tension

and the geometry of the junction

Fig. 4 shows a comparison of the predicted (for a = 1) and

measured lengths of droplets formed in our reference

T-junction geometry for a wide range of rates of flow of both

phases and for two different viscosities of the continuous fluid.

In spite of its simplicity, the model agrees well with the

experimental data. We also tested the dependence of the length

of the droplets on the rates of flow of the fluids in four

different geometries (Table 1), and the model predicts the size

well for all of the series (see ESI{). The experiments in which

the width of the main channel (w = 200 mm) was much greater

Fig. 4 Comparison of the measured lengths L of the droplets with the

prediction of the simple model derived from the postulated mechanism

of break-up for two different viscosities m of the continuous fluid

(m = 10 mPa s (#, $), and m = 100 mPa s (%)). The series denoted

with ($) was obtained for the continuous fluid containing surfactant

DC3225C (1% w/w, Dow Corning). The rates of flow span the

following ranges (in mL s21): Qwater s (2 6 1023, 0.5) and Qoil s
(0.014, 0.556) for m = 10 mPa s, and Qwater s (5 6 1024, 0.389) and

Qoil s (0.0014, 0.278) for m = 100 mPa s. We conducted all these

experiments in the reference geometry of the T-junction (h = 33 mm,

w = 100 mm, win = 50 mm). The solid line gives the postulated scaling

L/w = 1 + Qwater/Qoil. The inset represents the same graph on a linear

scale.
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than the width win of the inlet channel (w/win = 4),

demonstrated the effects of the shear stress exerted on the

liquid–liquid interface (see ESI{). In these experiments the

droplets did not fill the cross-section of the main channel

before they break off from the inlet, and the viscosity of the

continuous fluid changed the observed lengths of the droplets

in a systematic way (see Fig. S2 of ESI{).

The transition from squeezing (e/w % 1) to shearing (e y w)

may be estimated simply: if the typical length-scale l* at which

the shear stress is exactly balanced by the Laplace pressure l*

# cw/mu is greater than the width w of the outlet channel, then

the emerging drop does not yield to shear exerted by the

continuous fluid and effectively blocks the channel. Under

these circumstances the squeezing mechanism is expected to

describe the break-up. When l*/w , 1, shear stress becomes

sufficiently important to affect the sizes of the droplets

produced. In practice, however, we observe that the ratio of

the width of the inlet channel to the width of the main channel

is a very important parameter in this transition. For the same

capillary numbers we observe that when win/w ¢ 1/2, the

droplets break in the ‘squeezing’ mode (the tip of the

immiscible thread blocks the whole cross-section of the main

channel), and our model correctly predicts the size of the

droplets. For win/w , 1/2 we observe that the shear stress

exerted on the immiscible tip distorts the drop significantly and

the squeezing model and the scaling proposed in this article no

longer apply. Detailed analysis of the deformation of a droplet

adhering to a wall and subject to simple shear flow—as a

function of the ratio of the size of the droplet to the area of

attachment, and various other parameters—can be found

elsewhere.48–50

3. Gas–liquid systems

The pressure drop Dp that is needed to drive the continuous

fluid around the immiscible thread does not depend critically

on the viscosity of the dispersed fluid. Both in the case of a

viscous droplet and in the case of a gaseous bubble, which

block the flow of the carrier fluid, Dp increases sharply upon

decrease of the thickness e of the film separating the interface

from the walls of the channel. Thus the mechanism of break-

up that we described for liquid–liquid systems should apply

equally well to liquid–gas systems (Fig. 5a–e). The length L of

the bubbles produced in a T-junction should follow the same

scaling: L = d(Qgas/Qliquid) + w, where Qgas is the rate of inflow

of gas into the main channel given by Qgas = p/R, where R is

the resistance to flow in this channel and p is the difference in

pressures between the inlet of the gas and the outlet of

the main channel, located the length Lch downstream from the

Fig. 5 Optical micrographs of bubbles of nitrogen in a surfactant-free

aqueous flow produced with a microfluidic T-junction device. (a)–(c)

Depict the reference geometry (100 mm-wide outlet channel) for a

constant rate of flow of water (0.417 mL s21) and with the pressure of

the gas set at 34.3 kPa (a), 41.9 kPa (b) and 49.0 kPa (c). Inset (d)

depicts a system with a 50 mm-wide outlet channel at the same rate of

flow of water and with the pressure of nitrogen set at 83.9 kPa, while

(e) shows a system with a 200 mm-wide outlet channel at the same rate

of flow of water and with the pressure of nitrogen set at 21.2 kPa. (f)

The length of the bubbles produced in the reference T-junction as a

function of the factor (Qliquidm) of the rate of flow of the continuous

fluid and its viscosity for three different viscosities (see legend in the

figure) and for fixed pressure applied to the gas stream p = 41 kPa. (g)

Scaling of the length of the bubbles produced in T-junction geometries.

Qgas is calculated according to Qgas = p/R, where R gives the estimate

of the viscous resistance to flow in the outlet channel (Lch = 2 cm for

all the curves)—see text. (#) Reference geometry (h = 33 mm, w =

100 mm, win = 50 mm) at Qliquid = 0.417 mL s21; (e) same geometry,

Qliquid = 0.833 mL s21; (%) same geometry, Qliquid = 0.417 mL s21,

continuous liquid containing surfactant Tween 20 (2% w/w); ($) and

(&) w = 50 and 200 mm respectively, Qliquid = 0.417 mL s21. The solid

line gives the predicted scaling (L 2 w)/d = Qgas/Qliquid. The fitting

parameter d = 50 mm for all the curves besides the one for w = 200 mm,

for which d = 100 mm.

This journal is � The Royal Society of Chemistry 2006 Lab Chip, 2006, 6, 437–446 | 443



T-junction. For low volume-fractions of bubbles in the

downstream portion of the main channel, to a first order

approximation, we can assume that the R will scale as it would

in a channel filled with the continuous liquid: R 3 mLch/h2w2.

Verification of proposed scaling

To test the postulated scaling, we made three checks: (i) the

effect of viscosity of the continuous liquid on the length of the

bubbles, (ii) the effect of the length of the outlet channel and

(iii) the effect of the geometrical parameters of the T-junction.

According to the postulated scaling, the length of the

bubbles should be inversely proportional to the viscosity of the

continuous liquid, since (L 2 w)/d = Qgas/Qliquid = p/QliquidR

3 p/(Qliquidm) (because R 3 m). In Fig. 5f, we plot (L 2 w)/d as

a function of (Qliquidm) for p = 41 kPa and for three different

viscosities of the liquid (m = 0.9, 5.8 and 10.8 mPa s). The

curves are similar in shape and magnitude, this observation

supports the prediction that (L 2 w)/d scales inversely with m.

In order to check further that the length of the bubbles

produced in the T-junction is inversely proportional to the

viscous resistance to flow in the outlet channel, we change the

length Lch of this channel by incorporating ‘resistors’—10 cm

long sections of the outlet channel. According to the squeezing

model, (L 2 w)/d = Qgas/Qliquid = p/QliquidR 3 p/Lch (because

R 3 m) and hence [(L 2 w)/d]Lch 3 p. Experiments with

networks containing one (n = 1) and two (n = 2) resistors

confirm this scaling (see Fig. S2 of ESI{)—a twofold increase

of the resistance of the outlet channel caused a twofold

decrease of the size of the bubbles.

Finally, we compare the lengths of bubbles formed in

T-junctions characterized by different widths of the main

channel. In Fig. 5g, we plot (L 2 w)/d as a function of the

ratio Qgas/Qliquid for three different geometries (w = 50, 100

and 200 mm). The lengths of the bubbles observed in

experiment agree with the predicted scaling (shown with the

solid line in Fig. 5g) for small bubbles and small volume

fractions of bubbles in the outlet channel. At larger lengths

of bubbles and larger volume fractions, the length of the

bubbles increases much more rapidly with the increase of

the applied pressure than the model predicts. We speculate that

the origin of this discrepancy is that the model overestimates

the resistance to flow in the outlet channel at high volume

fraction of the gaseous phase: as the volume fraction of the

bubbles in the outlet channel grows, the ratio of the actual

resistance to flow in the outlet channel to the resistance

estimated for the clean continuous fluid drops substantially.

This drop results in larger rate of flow of gas, than that

predicted in our simple model, and larger sizes of bubbles.

Surprisingly, when the liquid contained surfactant, the lengths

of the bubbles followed our simple model almost ideally

(Fig. 5g). Decoration of the gas–liquid interface with

surfactant has a pronounced influence on the resistance to

flow of the liquid and bubbles in the outlet channel. When the

interface is clean (free of surfactants) the continuous fluid

confined to the thin films between the gas–liquid interface and

the walls of the channels is stationary.51,52 Then, the

dissipation occurs only in the liquid in between the bubbles,

and because there is less liquid between the bubbles than if the

channel was filled with liquid only, the resistance is smaller. In

contrast, an interface decorated with surfactant supports the

shear stress, and the liquid adjacent to the interface flows at

the speed of the bubble. The motion of the fluid in the thin

films adds to the resistance to flow, and—surprisingly—in the

experiment that we performed it resulted in a resistance very

similar (judging by the applicability of our model) to the

resistance of the continuous fluid flowing at the same

superficial speed. In order to generalize this observation,

however, this result should be tested over a wider range of

types and concentrations of surfactants.

4. Conclusions

We have demonstrated that under conditions that are typical

for use of the microfluidic T-junction (widths and heights on

the order of 10 to 100 mm and rates of flow on the order of 0.01

to 1 mL s21), and for small values of the capillary number the

dominant effect in the break-up of either liquid or gaseous

streams in the continuous fluid is the balance of hydrostatic

pressures in the two immiscible fluids. The ‘squeezing’

mechanism of break-up is specific to microsystems as it

depends crucially on the blockage of the channel by a liquid or

gaseous plug. This mechanism allows formulation of a simple

scaling law that predicts the size of droplets and bubbles

produced in microfluidic T-junctions. We find that the

geometries that promote the squeezing mechanism can be

described by two conditions: (i) the width of the main channel

should be greater than its height, and (ii) the width of the inlet

channel should be at least equal to half the width of the main

channel.

We note that in the survey presented in this paper we

explored only systems in which the viscosity of the dispersed

phase is smaller than the viscosity of the continuous phase. It is

an interesting question if—and how—an increased viscosity of

the dispersed phase will modify the scaling relations presented

herein.

Results of numerical simulations22 for a T-junction in which

w = win = h, confirm the mechanism of break-up that we

postulated here including the evolution of pressures in the

continuous and discontinuous phases depicted schematically in

Fig. 3. These simulations show that there is a transition

from the squeezing (pressure-dominated) to dripping (shear-

dominated) mechanism of break-up at a value of the capillary

number of the order of 1022.

The squeezing mechanism of break-up, particular to low

values of capillary numbers and confined geometries of

microfluidic systems, implies two important experimental

predictions: (i) it should be possible to form emulsions at very

small length-scales (when Ca % 1), and (ii) it is possible to

form not only liquid droplets but also bubbles, regardless of

whether the interface is saturated with surfactants or not. The

increased pressure drop along a droplet that fills the cross-

section of the channel can be expected in channels with cross-

sections different than rectangular, e.g. circular, and thus the

squeezing regime of break-up should also be observed in such

geometries.

The quantitative model presented in this survey should

facilitate tuning the architecture of the T-junction and
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choosing the rates of flow resulting in sizes of the droplets

required for specific applications.

5. Experimental procedures

Preparation of the microfluidic devices

We fabricated the devices using photolithography and soft

lithography.53 We used a transparency mask to produce a

photoresist master that we then covered in polydimethylsilox-

ane (PDMS). After the PDMS cured, we sealed the slab

containing the channels in relief to either a flat slab of PDMS

(for the droplet-generating systems) or a glass microscope slide

(for the bubble-generating systems). The PDMS slabs and

glass slides were exposed to an oxygen plasma prior to

sealing.54 We placed the droplet-generating systems in an oven

at 100 uC for 24 h so that the surface of the PDMS would

become uniformly hydrophobic prior to use. The bubble-

generating systems, on the other hand, were used immediately

after sealing to ensure that the surface of the PDMS remained

hydrophilic.

Fluids

We performed two sets of experiments: in the first one

we dispersed water (Milipore, viscosity mwater = 0.9 mPa s

at 24 uC) in silicon oil (Fluka, viscosity m = 10 mPa s, and

100 mPa s). In some experiments the continuous (oil)

phase contained an emulsifier (DC 3225C, Dow Corning,

2% w/w). The interfacial tension between the silicone oil

and water was y36.5 mN m21 without the surfactant.55

We forced both liquids into the system at externally fixed

rate of flow (Qwater and Qoil) with digitally operated

syringe pumps (Harvard Apparatus, PhD2000) through

PET tubing (PE60, Intramedic). In the second set of

experiments we dispersed gas (nitrogen) in aqueous

solutions of glycerol (m = 0.9, 5.8 and 11 mPa s for 0%,

52% and 62% glycerol w/w). In some experiments water

contained Tween 20 surfactant (Fluka, 2% w/w). In the case of

pure water–nitrogen interface we assume the value of

interfacial tension c to be the same as for a water–air interface

(c = 72 mN m21). Addition of Tween 20 (2% w/w) lowers this

value to (c # 35 mN m21). Here we control the pressure

p applied to the gas stream and the rate of flow Qwater of the

aqueous solutions.

After changing any of the flow parameters (rates of flow or

pressure), we waited an appropriate amount of time before

taking measurements to let the system relax to a steady-state

flow (in the inlet channels) and a stable break-up process.

This relaxation time depended largely on the rates of flow

of the fluids flowing through the system. At high rates (y1–

10 mL s21) equilibration was fast—on the order of few

seconds. At the lowest rates of flow (1024–1022 mL s21) the

system required several (1 to 30) minutes for the system to

become stable. In practice, after changing any of the rates of

flow, we waited until the systems started to produce uniform

series of droplets (or bubbles), added and additional time (1 to

10 min) to ensure equilibration, and than proceeded with the

measurements.

Observation and image analysis

We visualized the behavior of the system through a micro-

scope. We used a high-speed camera (Phantom V7) to record

movies of the formation of bubbles and droplets, and

measured their sizes (lengths) using Adobe Photoshop.
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